

PH600 series high performance electro-hydraulic servo drive Instruction Manual

Preface

Thank you for choosing our PH600 series high performance electro-hydraulic servo driver.

Designed for hydraulic equipment such as injection molding machine, die-casting machine, and hydraulic press, the servo system features energy saving, high accuracy, high efficiency and durability for adopting high performance vector control. The drive has rich external expansion and CAN communication interfaces, helping to form a multi-pump parallel system to realize the hydraulic control on large flow equipment.

If you use the drive for the first time, please read this manual carefully to ensure correct and safe operation. Please keep this manual in a safe place so that it can be consulted at any time.

We are committed to the continuous product improvement and upgrade. The background software and product information will be updated accordingly.

The target audiences of the manual include:

- Control system designer
- Installation or wiring personnel
- User or maintenance personnel

Please make sure to observe the following:

- The installation environment must be free of water vapor, corrosive gases, or combustible gases.
- Do not connect the grid power directly to the U, V and W terminals of the motor when wiring. Otherwise, incorrect connection will cause drive or motor damage.
- Ground wires must be grounded safely.
- Do not disassemble the drive, motor, oil pump, or change the wiring while the power is on.
- Do not touch the heat sink at work to avoid burns.

We provide all-round after-sales and maintenance services. Do not disassemble the drive or motor housing unless authorized; any modification on the drive or motor or damage accompanied will revoke the warranty rights; and we will not be liable or responsible for the consequences caused.

If you have any questions during use, please consult the dealer or our customer service center.

Contents

Preface	i
Contents	ii
1 Safety precautions	1
1.1 Safety definition	1
1.2 Safety guidelines	1
2 Product overview	3
2.1 Product confirmation	3
2.2 Drive nameplate	3
2.3 Drive model description	3
2.4 Drive specifications	
2.5 Drive technical performance	5
2.6 Dimensions of drive	
2.6.1 Wall-mounting dimensions	
2.6.2 Flange mounting dimensions	
3 Mechanical installation	11
3.1 Installation environment	
3.2 Installing the drive	
3.2.1 Installation direction	
3.2.2 Installation method	
3.2.3 Single-unit installation	
3.2.4 Multiple-unit installation	
3.3 Disassembling/assembling the junction box of drive	
4 Electrical connection	
4.1 Wiring precautions	
4.2 Switch, contactor, and cable selection	
4.3 Terminal layout	
4.4 Standard wiring	
4.5 Jumper function	
4.6 Main circuit wiring	
4.6.1 Main circuit terminals	
4.6.2 External HMI terminals and resolver terminals	
4.6.3 Motor power cable and temperature measuring resistor terminals	
4.6.4 Motor resolver connection cable and terminals	
4.6.5 Typical wiring examples of main circuit	
4.6.6 Wiring procedure for main circuit terminals	
4.7 Input and output signal wiring	
4.7.1 Control circuit terminals	
4.7.2 Typical control signal wiring examples	28

4.8 Control signal interface circuit	28
4.8.1 Analog input circuit	28
4.8.2 Analog output circuit	29
4.8.3 Digital input circuit	29
4.8.4 Digital output circuit	30
4.9 CAN communication card	31
4.10 EtherCAT communication card (EC-TX508)	32
5 Operating through the LED panel	35
5.1 LED keypad introduction	35
5.2 LED panel functions	38
5.2.1 Keypad operation mode	38
5.2.2 Shortcut mode	39
5.2.3 Quick setup mode	40
5.2.4 Monitoring mode	46
5.2.5 Setup mode	49
5.2.6 Debug mode	73
5.2.7 Multi-pump mode	75
6 Commissioning	79
6.1 Pressure control commissioning	79
6.1.1 Flowchart	79
6.1.2 Commissioning procedure	79
6.2 Speed mode commissioning	86
7 Multi-pump combined flow control	87
7.1 Flow distribution method for multi-pump flow combining	87
7.2 Multiple pumps	88
7.3 Hybrid	89
7.4 Multiple modes	90
7.5 Communication with two models	91
7.6 Communication with four models	92
7.7 Multi-pump control mode settings	96
7.7.1 Pump model selection	96
7.7.2 Multi-pump parameter settings	96
7.7.3 Flow calibration	96
8 Troubleshooting	98
8.1 Display list for protection	98
8.2 Fault handling flowcharts	102
8.3 Common faults and solutions	118
9 Maintenance and inspection	120
9.1 Precautions	120
9.2 Check item	120

	Contents
9.3 Main circuit insulation test	120
9.4 Replacement of wearing parts	121
9.4.1 Service life	121
9.4.2 Replacement	121
10 Accessories	122
10.1 Noise filter model selection	122
10.2 Braking resistor model selection and installation	122
10.3 Pressure sensor model selection	125

1 Safety precautions

Read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the product. Otherwise, equipment damage or physical injury or death may be caused.

We shall not be liable or responsible for any equipment damage or physical injury or death caused due to your or your customers' failure to follow the safety precautions.

1.1 Safety definition

The precautions for safe operation in the manual are classified into "Danger", "Warning" and "Note".

Danger: Point out potentially dangerous situations that may result in serious personal injury or death if not operated as required.

Warning: Point out potentially dangerous situations that may result in serious personal injury or death if not operated as required.

Note: Point out potentially dangerous situations that may result in moderate personal injury if not operated as required.

1.2 Safety guidelines

	1.	Only trained and qualified professionals can perform the installation or maintenance.				
	2	Do not perform wiring, inspection or component replacement when the power is on. Before wiring or inspection, ensure all the input power supplies have been disconnected, and wait for at least 10 minutes or until the DC bus voltage is lower than 36V.				
Danger	3.	Please use insulated protective tools for inspection; otherwise, electric shock accident or personal injury may be caused.				
 Connect the ground wires reliably and ask professio performing wiring to avoid electric shock or fire accident. 						
	Do not install the motor, braking resistor, or driver near combustible materials; otherwise, fire may be caused.					
	Do not modify the product unless authorized; otherwise, electric shock, malfunction, burns, or fire may be caused.					
٨	1.	Do not hold or pull the aviation plug connector to deliver the motor. Otherwise, the connector may be damaged, which may cause the motor to fall and cause injury.				
Warning	2	Do not knock the motor when installing the motor. Otherwise, the precision parts on the shaft may be damaged or the accuracy may be degraded.				

3.	The surface temperature of the motor may reach 100°C when running continuously at full load. The temperature is within the allowable range of design and can be operated normally, but you must install the motor in a place unaccessible to people and animals to avoid scalding.
4.	The external braking resistor may rise to a high temperature when the motor is frequently braked, which requires well-ventilated heat dissipation. It is recommended to place the motor outside the control cabinet (such as at the top ventilator outlet) with reliably protection measures. When the motor must be installed inside the cabinet, install it near the top ventilator outlet and away from other components.
5.	Check all external wiring carefully before first power-on to avoid major accidents caused by incorrect wiring.
6.	Turn on the motor for the first time with no load if possible, and make ready to turn off it depending on the running conditions.
7.	Do not close or open the power supply, but enable or disable the setup to start or stop the servo system.
8.	The product contains electrolytic capacitors, integrated circuits, epoxy boards and other components. Dispose of a scrap product as industrial waste; otherwise, personal injury or environmental pollution may be caused.
1.	Protect the drive against physical shock or vibration during the delivery and installation. Do not carry the drive only by its front cover as the cover may fall off.
2	Prevent the screws, cables and other conductive parts from falling into the drive.
Note	R, S, and T are the power input terminals, while U, V, and W are the output motor-connection terminals. Connect the input power cables and motor cables properly; otherwise, damage to the drive may occur.
4.	Close the drive front cover or junction box before using the drive; otherwise, electric shock may occur.
5.	Use proper torque to tighten screws for installation and wiring.
6.	Do not carry out insulation voltage-endurance test on the drive, or measure the control circuits of the drive with a megohmmeter.

For workplaces where the occasional failure of product could cause a major accident or significant damage, please consider equipment safety separately.

The manufacturer, seller, and service provider shall not be liable or responsible for associated damages and joint liability due to servo system failure.

2 Product overview

2.1 Product confirmation

Check the following after receiving the product.

Item	Remarks
Whether the product you have received is consistent with the purchased model.	Check according to the models on the motor and drive nameplates.
Whether the rotating shaft of the motor runs properly.	The motor is proper if the shaft rotates by hand.
Whether there is damage.	View the entire exterior and check for any damage caused during delivery.
Whether all accessories and documents are included.	Check according to the packing list.

If any problems are found, contact our local dealer or office.

2.2 Drive nameplate

Figure 2-1 Drive nameplate

2.3 Drive model description

PH600	.007	.43	Α	R	s	F	-xx
	Power class: 007: 7.5KW 011: 11KW	Voltage class:			Communication		74.
Product category: Electro- hydraulic product series	015: 15KW 018: 18.5KW 022: 22KW 030: 30KW 037: 37KW 045: 45KW 055: 55KW	23: three-phase 220V 43: three-phase 380V	Version Number: A: No built-in DC reactor (7.5kw-55kw optional) B: built-in DC reactor (75kw-110kw standard)	type:	mode: S: Standard C: CAN communication E: EtherCAT communication F: PROFINET	ŭ	Standby: Used to identify the customized machine

PH600	.007	.43	Α	R	s	F	-XX
	090: 90KW						
	110: 110KW						

2.4 Drive specifications

		D11000 044 4	D 11000 045 4	D11000 040 4	D 11000 000 4
Drive model	PH600.007.43	PH600.011.4	PH600.015.4	PH600.018.4	PH600.022.4
Drive model	ARSF	3ARSF	3ARSF	3ARSF	3ARSF
Applicable					
motor capacity	7.5	11	15	18	22
(kW)					
Rated output	10.5	0.5	32	20	45
current (Arms)	18.5	25	32	38	45
Overload (Arms)	00	0.5	40		0.7
lasts 5min	26	35	48	53	67
Max. output					
current (Arms)	32.5	40.7	55.2	63.6	81.3
lasts 30s					
Rated input	25	32	40	47	56
current (Arms)	25	32	40	47	56
Input power		AC380V(-15%)-440V(+10%)	47Hz-63Hz	
Weight (kg)	4.8	4.8	6.1	6.1	9.5
Recommended					
regenerative	400.1	00014/	400 1	100014/	15Ω 1500W
braking resistor	40Ω 1000W		40Ω 1000W		1977 190000
specifications					
Min. braking	31	31	23	23	15
resistance (Ω)	ગ	ગ	23	23	15

Drive model	PH600.030.43 ARSF	PH600.037.4 3ARSF	PH600.045.4 3ARSF	PH600.055.4 3ARSF	PH600.075.4 3BRSF
Applicable motor capacity (kW)	30	37	45	55	75
Rated output current (Arms)	60	75	92	115	150
Overload (Arms) lasts 5min	99	109	138	167	195
Max. output current (Arms)	113	141	169.7	226	297

Drive model	PH600.030.43 ARSF		PH600.037.4 3ARSF	PH600.045.4 3ARSF	PH600.055.4 3ARSF	PH600.075.4 3BRSF
lasts 30s						
Rated input current (Arms)	70		80	94	128	160
Input power			AC380V(-15%)-440V(+10%)	47Hz-63Hz	
Weight (kg)	14	1.5	14.5	21	21	27
Recommended regenerative braking resistor specifications	15Ω	1500W	10Ω 2000W	10Ω 2000W	10Ω 2000W	Two 20Ω 2000W resistors in parallel connection
Min. braking resistance (Ω)		11	.7	6.4		

Drive model	PH600.090.43BRSF	PH600.110.43BRSF
Applicable motor capacity (kW)	90	110
Rated output current (Arms)	180	215
Overload (Arms) lasts 5min	242	258
Max. output current (Arms) lasts 30s	318	350
Rated input current (Arms)	190	225
Input power	AC380V(-15%)-440	V(+10%) 47Hz–63Hz
Weight (kg)	49	49
Recommended regenerative braking resistor specifications	Three 20Ω 2000W resistors connected in parallel	Three 20Ω 2000W resistors connected in parallel
Min. braking resistance (Ω)	4.4	4.4

2.5 Drive technical performance

	Item		Condition					
	Control	mode	Three-phase full-wave rectification, IGBT with					
	Control	mode	pwm control on sine wave current drive					
	Max. output	frequency	400Hz					
	Motor positi	on sensor	Resolver resolution: 4096pluse/rev					
Basic			-10°C – +50°C (No freezing. Derating is required if					
specifications			the temperature exceeds 40°C.)					
	Environment	Working	When the actual ambient temperature of the drive					
		temperature	exceeds 40°C, derate the rated output current by					
			1% for every increase of 1°C. Do not use the drive					
			when the ambient temperature exceeds 50°C.					

	Item		Condition				
			Note: When the drive is built in a cabinet, the ambient temperature is the temperature of air in the cabinet.				
		Storage temperature	-30°C – +60°C (No freezing)				
		Relative humidity (RH)	Working/storage RH ≤ 90% (no condensation)				
		Air	Indoor (no sunlight, corrosive gas, combustible gas, oil mist, or dust)				
		Altitude	Below 3000m (Derating is needed when the altitude exceeds 1000m. Derate by 1% for every increase of 100m.)				
	Ingress	protection (IP) rating	IP20				
	Cool	ing method	Air cooling				
	Digital	Input	Six inputs. For details, see section 4.7.				
	signal	Output	Three outputs. For details, see section 4.7.				
	Analog	Input	Two (AI1, AI2) 12-bit D/A inputs, 0–10V; one (AI3) 12-bit D/A input, 0–10V/0–20mA				
	signal	Output	Two outputs, 10-bit D/A, 0-10V/0-20mA				
	Power supply	Output	Used to externally provide 15V reference power supply. Max. output current: 50mA Used to externally provide 24V reference power supply. Max. output current: 100mA				
	Commur	ication function	Four types of filed bus available: (Standard) Modbus (Optional) EtherCAT, CANopen, and PROFINET				
	LED par	nel and keypad	Five-digit display, with eight function keys				
	Prod	ess control	Supported input: analog input, internal input, communication input, RS485 continuous input, CANopen input, EtherCAT input, and PROFINET input				
Control	Spe	ed control	Supported control methods: CAN communication, RS485 communication, CANopen input				
function performance	Multi-pum	p parallel control	Able to control 16 pumps in five working modes (multi-pump, hybrid, multi-mode, communication with two models, and communication with four models)				
	Pressure	control accuracy	±1bar				
	Flow co	ntrol accuracy	±0.5%FS				
	Speed c	ontrol accuracy	±0.5%				

	Item	Condition					
	Pressure control stepped response	≤100ms					
	Speed stepped response	≤50ms					
	Flow calibration function	Able to calibrate pressure for output flow according to various pump characteristics					
	Torque response time	≤2ms					
Protection	Hardware	Protection against overcurrent, DC overvoltage, DC undervoltage, braking resistor damage, module overtemperature, pressure sensor fault, FWD/REV overspeed, and brake overload, and so on					
	Software	Protection against software faults, task re-entry and so on					
	Alarm record memory	Able to store five alarm records					
Other	EMC filter	C3: Built-in C3 filters C2: Optional external filters can be used to meet the C2 requirements.					
	Warranty period	18-month warranty for 80% load operation					
	Certification	Conform to the CE standards					

2.6 Dimensions of drive

2.6.1 Wall-mounting dimensions

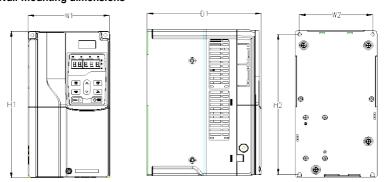


Figure 2-2 Dimensions of PH600.007.43ARSF ~ PH600.037.43ARSF

Table 2-1 Wall-mounting dimensions for PH600.007.43ARSF ~ PH600.037.43ARSF (unit: mm)

Drive model	Outlin	ne dimer (mm)	nsions		nting ho ance (m		Hole	Fixing
	W1	H1	D1	H2	W2	D2	diameter	screw
PH600.007.43ARSF	4.45	200	202	260	120	,	~6	ME
PH600.011.43ARSF	145	280	203	268	130	,	ø6	M5

Drive model	Outlin	ne dimei (mm)	nsions		nting ho		Hole	Fixing
	W1	H1	D1	H2	W2	D2	diameter	screw
PH600.015.43ARSF	160	220	210	308	154	/	ø6	M5
PH600.018.43ARSF	169	320	210					
PH600.022.43ARSF	200	341	208	328.6	185	/	ø6	M5
PH600.030.43ARSF	050	400	222	380	230	/	ø6	M5
PH600.037.43ARSF	250	400						

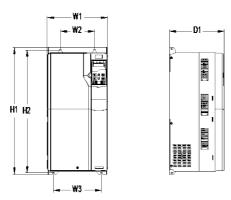


Figure 2-3 Dimensions of PH600.045.43ARSF ~ PH600.075.43BRSF

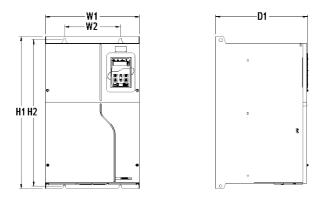


Figure 2-4 Dimensions of PH600.090.43BRSF ~ PH600.110.43BRSF

Table 2-2 Wall-mounting dimensions for PH600.045.43ARSF ~ PH600.110.43BRSF (unit: mm)

Drive model	Outlin	ne dimer (mm)	nsions		inting ho		Hole	Fixing
	W1	H1	D1	H2	W2	W3	diameter	screw
PH600.045.43ARSF								
PH600.055.43ARSF	282	560	257	542	160	226	ø9	M8
PH600.075.43BRSF								
PH600.090.43BRSF	220	554	000	504	000	,	0.5	140
PH600.110.43BRSF	338	554	330	534	200	/	ø9.5	M8

2.6.2 Flange mounting dimensions

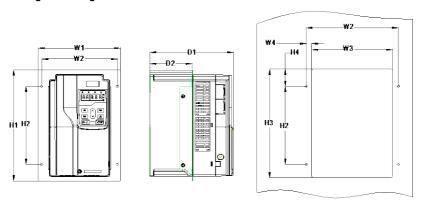


Figure 2-5 Dimensions of PH600.007.43ARSF ~ PH600.018.43ARSF

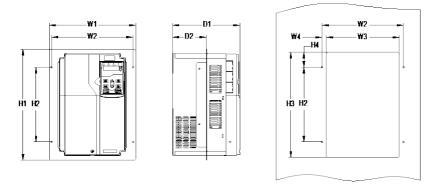


Figure 2-6 Dimensions of PH600.022.43ARSF ~ PH600.075.43BRSF

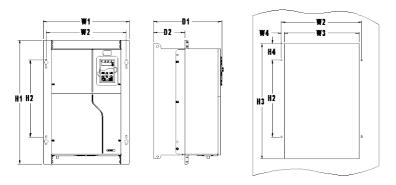


Figure 2-7 Dimensions of PH600.090.43BRSF ~ PH600.110.43BRSF

Table 2-3 Flange mounting dimensions for PH600.007.43ARSF \sim PH600.110.43BRSF (unit: mm)

Drive model	dimen	Outline		Mounting hole distance (mm)							Hole	Fixing							
	W1	H1	D1	H2	Н3	H4	W2	W3	W4	D2	diameter	screw							
PH600.007.43ARSF	000	000	000	045	000	00.5	404	404	40	400		145							
PH600.011.43ARSF	200	306	203	215	282	33.5	184	164	10	102	ø6	M5							
PH600.015.43ARSF	204	246	210	255	322	33.5	208	189	9.5	108	ø6	M5							
PH600.018.43ARSF	224	224	224	224	224	224	224	224	346	210	255	322	33.5	200	109	9.5	100	סש	IVIO
PH600.022.43ARSF	266	371	208	250	350.6	50.3	250	224	13	104	ø6	M5							
PH600.030.43ARSF	040	400	000	000	440		000	074	40	440.0	0	145							
PH600.037.43ARSF	316	430	222	300	410	55	300	274	13	118.3	ø6	M5							
PH600.045.43ARSF																			
PH600.055.43ARSF	352	580	257	400	570	90	332	306	13	134	ø9	M8							
PH600.075.43BRSF																			
PH600.090.43BRSF	440.5	000	000	070	550	00.5	000.5	004	440	440.5	-10	140							
PH600.110.43BRSF	418.5	600	330	370	559	80.5	389.5	361	14.2	149.5	ø10	M8							

3 Mechanical installation

3.1 Installation environment

The installation environment is essential for the drive to operate with drive performance in the long run. Install the drive in an environment that meets the following requirements.

Environment	Condition
Installation site	Indoor
Ambient temperature	 → -10-+50.0°C. → When the temperature exceeds 40°C, derate 1% for every increase of 1°C. → Do not use the drive when the ambient temperature exceeds 50°C. → To improve reliability, do not use the drive in the places where the temperature changes rapidly. → When the VFD is used in a closed space, such as control cabinet, use a cooling fan or air conditioner for cooling, preventing the internal temperature from exceeding the temperature required. → When the temperature is too low, if you want to use the VFD that has been idled for a long time, install an external heating device before the use to eliminate the freeze inside the VFD. Otherwise, the VFD may be damaged.
Relative humidity (RH)	 Less than 90% Condensation is not allowed. The max. RH cannot exceed 60% in the environment where there are corrosive gases.
Storage temperature	-30_+60.0°C.
Running environment	Install the drive in a place:
Altitude	♦ When the installation site altitude exceeds 3000m, consult the local INVT dealer or office.
Vibration Installation direction	Max. vibration ACC: 5.8m/s² (0.6g) Install the drive vertically to ensure good heat dissipation performance.

3.2 Installing the drive

3.2.1 Installation direction

The drive can be installed on the wall or in a cabinet.

The drive must be installed vertically. Check the installation position according to following requirements. For details about the outline dimensions, see 2.6 Dimensions of drive.

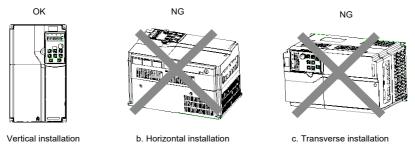
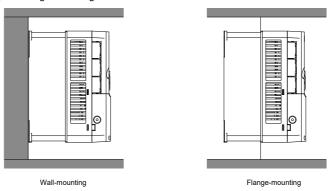
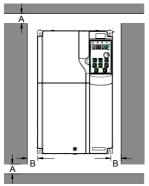


Figure 3-1 Installation direction

3.2.2 Installation method

The drive mounting method varies depending on the size. The mounting methods include wall mounting and flange mounting.




Figure 3-2 Installation method

The mounting procedure is as follows:

- 1. Mark the position of mounting holes. See appendix for the position of mounting holes.
- 2. Mount the screws or bolts onto the designated positions.
- 3. Lean the drive against the wall.
- 4. Tighten the screws.

Note: The flange mounting plate must be used for flange mounting.

3.2.3 Single-unit installation

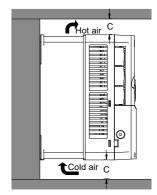
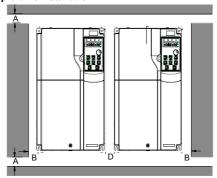



Figure 3-3 Single-unit installation

Note: For clearances A and B, each must be 100mm at least. The clearance C must be 200mm at least.

3.2.4 Multiple-unit installation

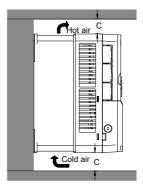


Figure 3-4 Multiple-unit parallel installation

Note:

- When you install drives in different sizes, align the top of each drive before installation for the convenience of future maintenance.
- For clearances A, B, and D, each must be 100mm at least. The clearance C must be 200mm at least.

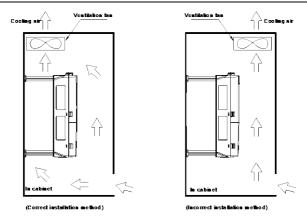
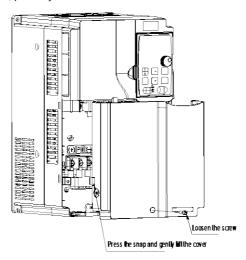



Figure 3-5 Ventilation fan installation position

3.3 Disassembling/assembling the junction box of drive

To disassemble the junction box of drive (for example, PH600.018.43ARSF), do as follows:

- 1. Loosen and remove the screws of the junction box.
- 2. Press the snap-fit, pull the junction box outward and take it out.

To assemble the junction box of drive (for example, PH600.018.43ARSF), do as follows:

- Put the junction box horizontally into the convex groove, and push the box so that the junction box and the housing slit overlap.
- 2. Fasten the two fastening screws of the junction box.

4 Electrical connection

4.1 Wiring precautions

	1.	Only trained and qualified professionals can perform the wiring. Incorrect wiring may cause electric shock or fire.
\wedge	2.	The drive can be connected directly to an industrial power line. In other words, no transformer is used for isolation. To prevent crosscontact electric shock accidents, use the circuit breaker or fuse with the purpose of wiring.
Warning	3.	The drive does not have a built-in ground protection circuit. To build a safer system, please configure a leakage circuit breaker with both overload and short-circuit protection, or configure a ground-wire-protection leakage circuit breaker that is used together with a wiring circuit breaker.
	1.	It is recommended to use A, B or C grounding method (grounding resistance of 10Ω or less). A point of grounding must be used. When the motor and mechanical firmware are insulated from each other, ground the motor directly.
	2.	Use a thick wire (4.0mm ² or greater) for grounding whenever possible.
	3.	Most leakage protection switches on the market are electronic
		leakage circuit breakers, of which internal leakage current detection and processing circuits vary greatly with manufacturers. Therefore, the breakers from different manufacturers are different in anti-interference ability. It is recommended to use a relatively strong anti-interference leakage circuit breaker.
Note	4.	Route the electrical cables such as power cable and motor input cable separately from signal cables, with an interval of more than 30cm. Do not put the cables in the same pipe or bundle together.
	5.	Do not use the same power supply with a welding machine, electrical discharge processing machine, and so on. Even if different power supplies are used, when there is a high frequency generator nearby, connect a noise filter on the input side of the power cable.
	6.	Install surge suppressors on the coils of relay, solenoid, and electromagnetic contactor.
	7.	To prevent malfunction caused by noise, configure the input command device and noise filter as close as possible to the drive.
	8.	Select a reasonable cable diameter, switch capacity, and contactor capacity. See section 4.2 "Switch, contactor, and cable selection".

Note: Incorrect wiring may cause system faults or personal safety risks.

4.2 Switch, contactor, and cable selection

Table 4-1 Recommended cable size

	Power incoming circuit	contactor		Main circuit Recommended cable size (mm²) Fasten-						
Drive model	breaker	AC3 rated working current (A)	R/S/T	Recommended	Terminal	PE	Recommended connection terminal model	ing torque	Recom- mended cable size (mm²)	
PH600.007.43ARSF	40	25	4	TNR3.5-5	M5	4	TNR3.5-5	2-2.5	1.5	
PH600.011.43ARSF	50	40	6	TNR5.5-5	M5	6	TNR5.5-5	2-2.5	1.5	
PH600.015.43ARSF	60	40	10	TNR8-5	M5	10	TNR8-5	2-2.5	1.5	

	Power incoming	AC	Main circuit									
Drive model	circuit	contactor AC3 rated		Recommend	ed cable	size ((mm²)	Fasten-	Recom-			
Brive model	breaker switch (A)	working current (A)	R/S/T U/V/W	Recommended connection terminal model	Terminal	PE	Recommended connection terminal model	torque	mended cable size (mm²)			
PH600.018.43ARSF	80	50	10	TNR8-5	M5	10	TNR8-5	2-2.5	1.5			
PH600.022.43ARSF	100	65	16	GTNR16-6	M6	10	GTNR10-5	3.5	1.5			
PH600.030.43ARSF	125	80	16	GTNR16-6	M6	10	GTNR10-5	3.5	1.5			
PH600.037.43ARSF	160	95	25	GTNR25-6	M6	10	GTNR10-5	3.5	1.5			
PH600.045.43ARSF	160	115	25	GTNR25-8	M8	16	GTNR16-6	9–11	1.5			
PH600.055.43ARSF	200	150	35	GTNR35-8	M8	16	GTNR16-6	9–11	1.5			
PH600.075.43BRSF	250	185	50	GTNR50-8	M8	25	GTNR25-6	9–11	1.5			
PH600.090.43BRSF	315	225	70	GTNR70-12	M12	35	GTNR35-6	31–40	1.5			
PH600.110.43BRSF	315	260	70	GTNR70-12	M12	35	GTNR35-6	31–40	1.5			

The recommended cable for the main circuit can be used at an ambient temperature of 40°C or less. If the ambient temperature is greater than the conditions, it is recommended to use the cable of a higher model. It is recommended to use cables with insulation of at least 500V.

The brake resistor is self-wired. If you want to extend it, the extension wire diameter is not lower than the original resistor wire diameter.

GTNR terminal brand: Suzhou Yuanli (The model varies with the brand.)
SG narrow-head terminal brand: Suzhou RCCN (The model varies with the brand.)

4.3 Terminal layout

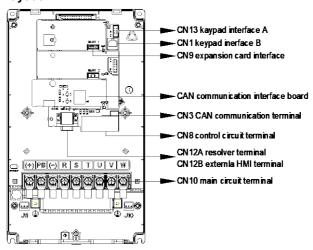


Figure 4-1 Terminal layout diagram

4.4 Standard wiring

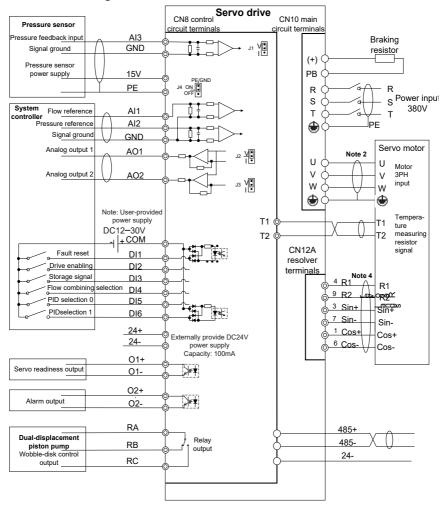


Figure 4-2 Standard wiring diagram

Note:

- The default pressure sensor of the drive uses 15V as the power supply, and the accepted
 pressure signal is the voltage signal of 0–10V or 1–5V. Or you can switch the signal to the
 current signal of 0mA–20mA through the jumper J1 on the control board.
- 2. To prevent the drive from being affected by interference signal, it is recommended to use

- shielded cables for all analog signal cables and motor three-phase input cables, with the shield layer grounded.
- 3. When using the analog and digital output ports, ensure that the output load resistance is large enough so that the output current is less than the designated value. The default analog output range is 0–10V, and can be switched to 0–20mA current output through the jumper J2/J3 on the control board.
- 4. The resolver cable and communication cable must use shielded twisted pair cables, with the shield layer grounded. Configure a terminal matching resistor at both the first and last ends of the communication cable. The CAN communication signal connector of the drive has been configured with a built-in 120Ω terminal resistor. The RS485 communication signal connector of the drive has been configured with a built-in $1k\Omega$ terminal resistor.
- The GND terminal can be connected to PE directly or through RC filter by configuring jumper J3 on the interface board. The GND terminal is directly connected to PE by default.
- In this wiring diagram, digital input signal uses the external power supply by default. If you want to use internal power supply, you can use the external connection (please note that the internal power supply has a load capacity of 100mA).

4.5 Jumper function

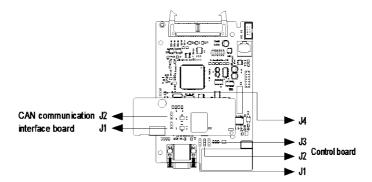


Figure 4-3 Control board circuit diagram

PCB board name	No. Position		Function	Position	Function
O and the land	J1	> -	The default Al3 input is voltage type (0–10V/1–5V)	V •	AI3 input is current type (0– 20mA)
Control board	J2	V •	The default AO1 output is voltage type (0–10V)	V •	AO1 output is current type (0– 20mA)

PCB board name	No.	Position	Function	Position	Function
	J3	V •	The default AO2 output is voltage type (0–10V)	V •	AO1 output is current type (0– 20mA)
	J4	C PE	Enables the GND terminal to connect to PE directly by default.	C PE	Enables the GND terminal to connect to PE through the resistor and capacitor.
CAN	J1	120 Ω	Enables the CAN2 communication connected with a 120Ω termination resistor	120 Q •	Enables the CAN2 communication not connected with a termination resistor
communication interface board	J2	120 Ω • • • • • • • • • • • • • • • • • •	Enables the CAN1 communication connected with a 120Ω termination resistor	120 Ω •	Enables the CAN1 communication not connected with a termination resistor

4.6 Main circuit wiring

4.6.1 Main circuit terminals

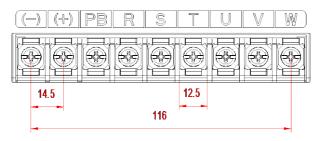


Figure 4-4 Main circuit terminal diagram for 3PH 380V 7.5–11kW (unit: mm)

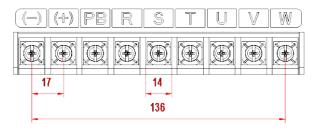


Figure 4-5 Main circuit terminal diagram for 3PH 380V 15-18.5kW

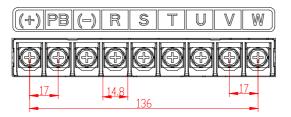


Figure 4-6 Main circuit terminal diagram for 3PH 380V 22kW

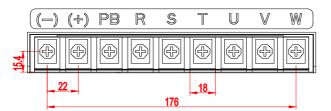


Figure 4-7 Main circuit terminal diagram for 3PH 380V 30-37kW

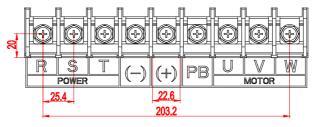


Figure 4-8 Main circuit terminal diagram for 3PH 380V 45-75kW

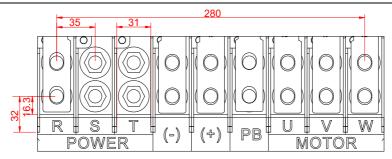


Figure 4-9 Main circuit terminal diagram for 3PH 380V 90-110kW

Terminal name	Terminal symbol	Function
Main circuit power input terminals	R, S, T	AC380V(-15%)-440V(+10%) 47Hz-63Hz
Motor connection terminals	U, V, W	Connect to the motor.
Grounding terminal		Connects to the power grounding terminal and motor grounding terminal for grounding.
External braking resistor connection terminal (PB terminal available for the model with the rated current of 180A and lower)	(+), PB	An external braking resistor is connected between (+) and PB.
DC reactor terminal (P1 terminal available for the model with the rated current of 215A and higher)	P1, (+)	P1 and (+) connect to external DC reactor terminals.

4.6.2 External HMI terminals and resolver terminals

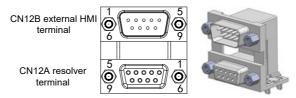


Figure 4-10 CN12A resolver and CN12B external HMI DB9 terminal

The external HMI terminal is the public connector of the external HMI. If you use the external HMI for debugging, insert the connection cable of the HMI.

CN12B external HMI terminal

Signal name	Symbol	Pin	Function
RS485 communication interface	RS485_A RS485_B	CN12B-7 CN12B-2	Semi-duplex. Max. communication rate: 57600bps (default value: 19200bits/s)
Communication power supply	+5VA	CN12B-4,8	5V power supply. Max. output
GND	GND_5VA	CN12B-5,9	current: 200mA. Accuracy: ± 5%

CN12A resolver terminal

Signal name	Symbol	Pin	Function
Resolver sine input + Sin+		CN12A-3	Decelves since foodback signal
Resolver sine input -	Sin-	CN12A-7	Resolver sine feedback signal
Resolver cosine input +	Cos+	CN12A-1	D h
Resolver cosine input -	Cos-	CN12A-6	Resolver cosine feedback signal
Excitation signal +	R1	CN12A-4	Deschier excitation signal
Excitation signal -	R2	CN12A-9	Resolver excitation signal

4.6.3 Motor power cable and temperature measuring resistor terminals

Figure 4-11 Motor power cable

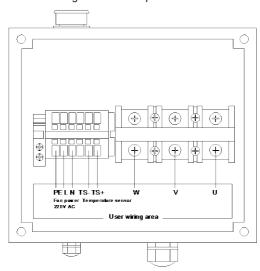


Figure 4-12 Motor wiring terminals

No.	Name	Definition
1	U	
2	V	Motor three-phase inputs
3	W	
4	TS+	T
5	TS-	Temperature measuring resistor
6	N	
7	L	Fan power supply, 220V AC
9	PE	Grounding

4.6.4 Motor resolver connection cable and terminals

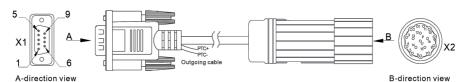


Figure 4-13 Motor resolver connection cable and terminals

Table 4-2 Wiring mapping

Signal	X1	X2	Core wire structure
R1	4	7	Todaka din ain
R2	9	10	Twisted pair
Sin+	3	14	Turista di main
Sin-	7	4	Twisted pair
Cos+	1	5	Todaka da ada
Cos-	6	6	Twisted pair
PTC+	CN8 Control terminal: T1	16	Todaka dan din
PTC-	CN8 Control terminal: T2	17	Twisted pair
PE	Housing	Housing	Woven

Note:

The driver side plug of the rotary cable has two outgoing cable, which are the motor thermistor PTC130 outgoing cable, directly connected to T1 and T2, regardless of positive or negative;

4.6.5 Typical wiring examples of main circuit

	1.	Only one wire can be inserted into each wire insertion port of the connector.
Note	2	The motor three-phase cable must be a shielded cable, of which one end connects to the drive ground wire, and the other end connects to the motor connector ground wire.

The screws need to be fastened properly to ensure a smooth connection.

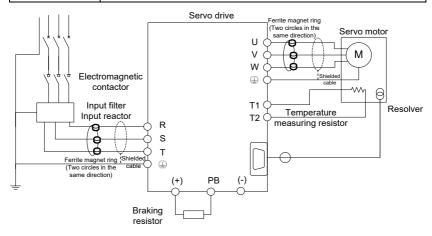


Figure 4-14 Main circuit wiring diagram

4.6.6 Wiring procedure for main circuit terminals

- Connect the input power cable to the drive power input terminals R, S, and T. Connect the
 ground conductor of the input power cable to any of drive ground screws and fasten the
 screw properly to ensure a smooth connection.
- Connect the motor three-phase input terminals U, V and W to the motor connection terminals U, V and W respectively, and fasten the screws properly to ensure a smooth connection. Connect the motor ground terminal to any of the drive ground screws.
 Connect the motor temperature measuring resistor terminals to the terminals T1 and T2 on the drive control board. Connect the motor resolver connection terminal to the drive connector CN4, and fasten the screws.
- Connect the two wiring terminals of braking resistor to the drive terminals (+) and PB respectively, and fasten the screws properly to ensure a smooth connection.

4.7 Input and output signal wiring

4.7.1 Control circuit terminals

Figure 4-15 shows the control circuit terminals.

Figure 4-15 Control circuit terminals

Description of control circuit terminals:

Category	Terminal name	Terminal symbol	Pin	Function
Analog input 1 (default flow reference) Analog input 2 (default pressure reference) Analog input 3 (default pressure feedback)	(default flow	Al1	CN8-16	Input range: 0–10V, 12bit resolution, calibration accuracy 0.5%; Input impedance: 24kΩ.
	(default pressure	Al2	CN8-17	Input range: 0–10V, 12bit resolution, calibration accuracy 0.5%; Input impedance: 24kΩ.
	Al3	CN8-18	Input range: $0-10V/1-5V/0-20mA$, 12bit resolution, calibration accuracy 0.5%; use the jumper J1 on the control board to select the input of $0-10V/1-5V$ or $0-20mA$. Input impedance: $100k\Omega$ for voltage input; 500Ω for current input.	
Analog output	Analog output 1	AO1	CN8-20	Default terminal function: pressure feedback output. Monitoring output. Internal parameter output can selected through the LED panel. Whether voltage or current is used for output is set through the jumper J2 on the control board. Output range: 0–10V or 0–20mA, 10bit resolution, calibration accuracy 1%, max. load resistance≤500Ω.
	Analog output 2	AO2	CN8-21	Default terminal function: speed feedback output. Monitoring output. Internal parameter output can selected through the LED panel. Whether voltage or current is used for output is set through the jumper J3 on the control board.

Category	Terminal name	Terminal symbol	Pin	Function
				Output range: 0–10V or 0–20mA, 10bit resolution, calibration accuracy 1%, max. load resistance≤500Ω.
		T1	CN8-24	The motor temperature sensor terminals (T1, T2) do not distinguish the positive or negative pole.
Motor temperature	Motor temperature sensor	Т2	CN8-25	The drive supports the motor temperature sensors (or resistors) of the KTY84, PT1000, and PTC130 types. You can change the motor temperature sensor type through the LED panel. Then the hardware circuit automatically selects the corresponding temperature sensor detection circuit.
	Pressure	15V	CN8-23	Voltage: +15VDC, ±5% (in full scale range), output < 50mA at 25°C.
Power	sensor power supply	GND	CN8-19 CN8-22	Analog signal ground terminal.
supply	0.01/	+24	CN8-8	Positive pole of 24V power supply.
	24V power for digital signal	-24	CN8-9 CN8-10	Negative pole of 24V power supply.
	Digital input 1	DI1	CN8-1	Default terminal function: fault reset, releasing the servo alarm status.
	Digital input 2	DI2	CN8-2	Default terminal function: servo enabling, unlocking the gate of drive to switch the motor to enter the energized state. After the driver power-on, the motor will be powered on with a delay of 3 seconds upon the first servo enabling and 10 seconds upon the second enabling.
Digital input	Digital input 3 Digital input 4	DI3 DI4	CN8-3 CN8-4	DI3 default terminal function: storage signal input (used with the electronic back pressure function). A high-level injection molding machine works in the storage state, while a low-level injection molding machine works in another state. Motor rotation direction signal (used with the node flow loop). Forward direction for low level, while reverse direction for high level.

Category	Terminal name	Terminal symbol	Pin	Function
				DI4 default terminal function: flow splitting/combining selection (used with multi-pump combined flow control). Splitting flow for high level, while combing flow for low level.
	Digital input 5	al input 5 DI5		DI5 default terminal function: PID terminal 1 DI6 default terminal function: PID terminal 2 Stepped PID parameter selection for single- pump pressure (4 steps) DI6 DI5 KP No. KI No. KD No.
	Digital input 6	DI6	CN8-6	low low 0 0 0 low high 1 1 1 high low 2 2 2 high high 3 3 3 Stepped PID parameter selection for multipump pressure control (4 steps) DI6 DI5 KP No. KI No. KD No. low low 0 0 0 low low 0 0 0 low high 1 1 1 high high 3 3 3
	Common terminal of digital input	СОМ	CN8-7	Common terminal of IO input. When COM is connected at high level, the IO input low level is valid. When COM is connected at low level, the IO input high level is valid.
		01+	CN8-26	Servo readiness. If the main circuit is
Digital output	Digital output 1	O1-	CN8-27	powered on without alarm output, the drive is on when the drive enabling end is at low level.
	Digital output	02+	CN8-28	Alarm output. If an exception is detected, the
	2	O2-	CN8-29	output signal state is reversed.
	Common terminal	RA	CN8-13	Wobble-disk output signal (used with the dual-displacement pump wobble-disk
	NC terminal	RB	CN8-14	control function). On for small flow, while off
Relay output	NO terminal	RC	CN8-15	for heavy. Relay output contact capacity: 0.5A/125VAC, 1A/30VDC. RB is NC terminal and RC is NO terminal.
Communicat	RS485	485+	CN8-11	RS485 communication interface supports the standard Modbus RTU communication
ion terminal	communication 485- CN8-12 protocol. It is configured with a			protocol. It is configured with a built-in $1k\Omega$

Category	Terminal name	Terminal symbol	Pin	Function
				terminal resistor. Semi-duplex. Supporting 9600bps, 19200bps, 38400bps, and 57600bps (19200bps by default).
		24-	CN8-10	RS485 shield ground
		C2L	CN3-4	

4.7.2 Typical control signal wiring examples

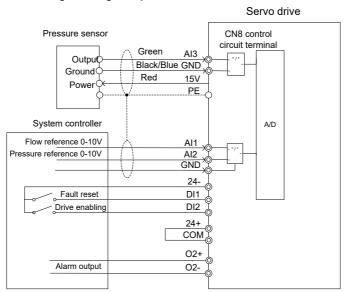


Figure 4-16 Typical control signal wiring examples

4.8 Control signal interface circuit

4.8.1 Analog input circuit

The analog input circuit is described as follows:

1. For pin 16 (flow reference) and pin 17 (pressure reference) of CN8 connector:

Voltage input: 0-10V; input impedance: 24kΩ

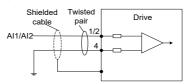


Figure 4-17 Analog input diagram

2. For pin 18 (pressure feedback input) of CN8 connector:

The analog signal is the oil pressure feedback signal. You can use the jumper J1 to select whether the pressure sensor input is 0-10V/1-5V or 0-20mA. Default: 0-10V. Input impedance: $100k\Omega$.

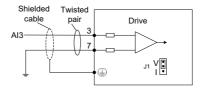


Figure 4-18 Pressure feedback input diagram

4.8.2 Analog output circuit

Analog output signals (AO1, AO2) are output from the OPA, with which the GND makes up an output circuit. You can select internal parameter output through the LED panel. By default, AO1 is pressure output, while AO2 is motor speed output.Output range: 0–10V or 0–20mA, 10bit resolution, calibration accuracy 1%, max. load resistance≤500Ω. Whether voltage or current is used for output is set through jumpers J2 and J3 on the control board. The following shows the interface circuit:

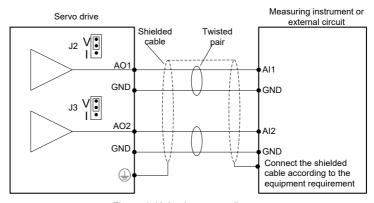


Figure 4-19 Analog output diagram

4.8.3 Digital input circuit

1. Wiring when using the user-provided power supply:



Figure 4-20 Digital input diagram

2. Wiring when using the local-provided power supply:

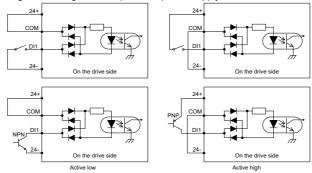


Figure 4-21 Digital output diagram

Note:

- The digital input circuit has two connection methods: a mechanical switch connection as shown in the figure and an open collector connection for triodes (NPN and PNP types, but the two cannot be mixed).
- Either the 24V power supply with a maximum current of 100mA carried by the servo driver or the user-provided 12–30V power supply can be used as the 24V power supply.

4.8.4 Digital output circuit

There are three digital output circuits, all of which are open-collector output structures as shown in Figure 4-22 and Figure 4-23. They can be used to drive relay coils or optocoupler loads with the load capacity shown in Figure 4-22 and Figure 4-23. When connecting inductive loads such as relay coils, install current-continuing diodes in the way shown in Figure 4-22 and Figure 4-23. When connecting optocouplers, a current-limiting resistor must be connected; otherwise, damage to the drive may occur.

The local 24V power supply can only provide a maximum current of 100mA. If the actual load current exceeds 100mA, please use your own power supply with the recommended capacity of 500mA.

1. Wiring when using the user-provided power supply:

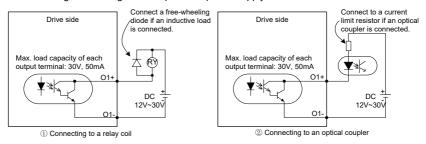


Figure 4-22 External power digital output diagram

2. Wiring method using the local-provided power supply:

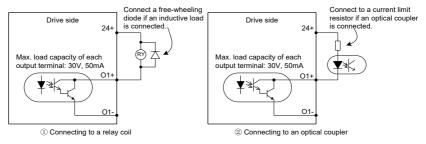


Figure 4-23 Internal power digital output diagram

3. The relay output circuit is described as follows:

Inductive loads (relays, motors) will produce voltage spikes when the current is cut off, so it is necessary to use varistors at the contact points of relays for protection and install absorption circuits on inductive loads, such as varistors, RC absorption circuits, diodes, etc., to ensure minimal interference at the time of shutdown.

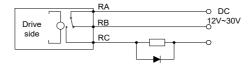


Figure 4-24 Relay output diagram

4.9 CAN communication card

The drive can connect to a high-speed CANopen communication network by connecting the

CN3 terminal on the CAN communication card to the CN10 terminal on the main control board, implementing field bus control. The following shows the CAN communication card.

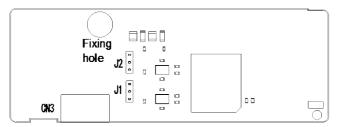


Figure 4-25 CAN communication board

4PIN terminal	Terminal Name	Symbol	PIN	Function		
1234	CAN1 communication	C1H C1L	CN3-1 CN3-2	standard CAN protocol signal using		
	CAN2 communication	C2H C2L	CN3-3 CN3-4	CAN communication port 2 supports the CANopen communication protocol and internally connects to a 120Ω terminal resistor through jumper selection.		

4.10 EtherCAT communication card (EC-TX508)

EtherCAT adopts standard RJ45 interfaces, and the two RJ45 interfaces have different directions. The interfaces are shown in Figure 4-26. IN (indicating input) and OUT (indicating output) are EtherCAT wiring network interfaces. The interfaces are described in Table 4-3.

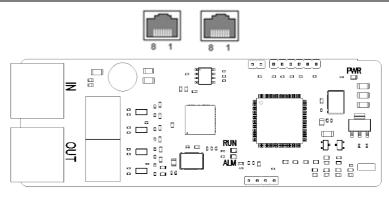


Figure 4-26 RJ45 interface diagram

Table 4-3 RJ45 interface function table

Pin	Name	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX-	Receive Data-
7	n/c	Not connected
8	n/c	Not connected

Status indicator

The EtherCAT communication card provides four LED indicators and four net port indicators to indicate its states, see Table 4-4.

Table 4-4 Indicator definition table

Name	Color	Meaning
		Indicates the EtherCAT running state.
		Off: Init state
RUN	Green	Blinks (Off:0.2s; On:0.2s): Pre-OP state
		Blinks (Off:1s; On:0.2s): Safe-OP state
		On: OP state
		Indicates the EtherCAT fault state.
01.04	Dad	Off: No fault
ALM		Blinks (Off:0.2s; On:0.2s): Init, Pre-OP state
		Blinks (Off:1s; On:0.2s): Safe-OP state

Name	Color	Meaning
		On: OP fault state
PWR	Red	3.3V power indicator
	Vallaur	Off: Ethernet connection is not established.
Not now indicator	Yellow	On: Ethernet connection is successful.
Net port indicator	Green	Off: No link
(IN)		On: Link exists but no active
		Blinks: Link exists and active
	Yellow	Off: Ethernet connection is not established.
Not wort in dispers	reliow	On: Ethernet connection is successful.
Net port indicator		Off: No link
(OUT)	Green	On: Link exists but no active
		Blinks: Link exists and active

Electrical connection

An EtherCAT network often consists of a master (PLC) and multiple slaves (drives or bus expansion terminals). Each EtherCAT slave has two standard Ethernet interfaces. Figure 4-27 shows the electrical wiring.

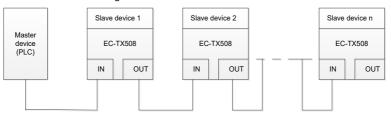


Figure 4-27 Linear network topology electrical connection

5 Operating through the LED panel

5.1 LED keypad introduction

The keypad is used to control the drives, read drive status, and set parameters. See the following figure:

Figure 5-1 Film keypad

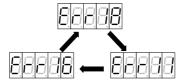
No.	Name	Display	I	Description			
		RUN/TUNE	Off: The drive is stopp Blinks: The drive is at state. On: The drive is in rur	electronic state or factory test			
		FWD/REV	Forward or reverse ru Off: The drive is runni On: The drive is runni	ng forward.			
1	Status indicator	LOCAL/REMOT	Command mode indicator Off: Digital input (keypad, HMI panel, or PC software input)				
		TRIP	Fault indicator Off: The drive is in normal state. On: The drive is in fault state.				
			Hz	Frequency unit			
2	Unit indicator		RPM	Rotation speed unit			
2	Offic indicator		Α	Current unit			
			%	Percentage			

No.	Name	Display		I	Description	
			- V		Voltage unit	
3	Digital display zone	Five-digit LED dis			ng data and alarm codes such	
4	Digital potentiometer	Used for input vo	Itage regulatior	۱.		
		PRGESC	Programming key		tch between modes or return to vious menu level.	
		DATA	Confirmation key	To enter next menu in parameter nand to confirm the setting of paranin edit mode.		
		Do		To increase data or move upward.		
				To decrease data or move downward		
4	Keys	SHIFT	Right-shifting key		rease the value of function code or shift the cursor left in edit mode.	
		QUICK	Multifunction shortcut key	To inci	rease the value of function code	
		RUN 🔷	Run key		the drive when the keypad is or control.	
		STOP RST	Stop/Reset key	keypad To rese	o the drive from running when the d is used for control. et the drive in any control modes t is in fault alarm state.	

LED display description:

Display	Means										
8	0		1		2	8	3	8	4	5	5
8	6		7	.00	8	8	9		Α		р

Display	Means	Display	Means	Display	Means	Display	Means	Display	Means	Display	Means
8	С	8	d	8	E	8	F	8	G	8	h
	1	3	J	8	К		L		М		N
	0	8	Р	8	q		R		S		Т
8	U	5	V	8	W	8	х	8	Y	5	Z
<i>E</i> .	-		-	-	-	-	-	-	-	-	-


Keypad display:

When the drive is powered on, the LED turns on. The LED digital value displays the motor rotation speed (rpm) by default, accurate to the ones place.

If a fault occurs during power-on or running, the TRIP indicator is on and the LED value places display the fault code. The fault code consists of a fault ID (the first three digits on the digital tube from left to right display Err) and a fault code number (the last two digits on the digital tube from left to right display two digits).

If there are multiple faults that occur at the same time, multiple fault codes are displayed in a repeated cycle.

Keypad unlocking:

The LED keypad operation is locked when powered on. When it is in the locked state, the key can only switch between short-cut mode and user mode.

PRG ESC

To switch to other operation modes, press and hold the When the LED value places display ULOCK, the drive keypad is unlocked. If the drive does not have a fault at this time, the drive keypad enters the shortcut mode. If the drive is faulty,

press ESC to enter the shortcut mode.

5.2 LED panel functions

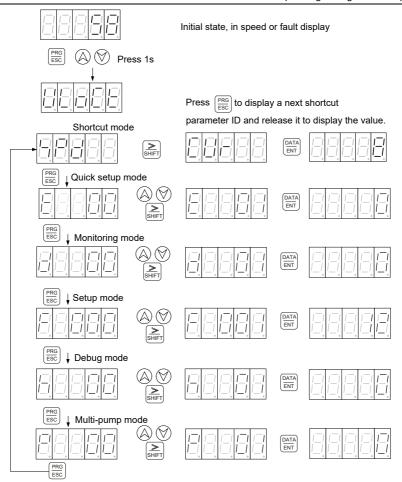
5.2.1 Keypad operation mode

The drive provides six keypad operation modes, which can be switched over through the key.

PRG ESC

Shortcut mode (xxxxx): used to display key parameters.

Quick setup mode (Exx): used to set key parameters and debug the motor.


Monitoring mode (dxx): used to display status parameters.

Setup mode (Fxxx): used to set basic parameters.

Debug mode (hxx): used to debug the motor and save parameters.

Multi-pump mode (Pxx): used to set multi-pump parallel connection parameters.

Operation flowchart:

5.2.2 Shortcut mode

In shortcut mode, you can press the key to quickly observe the important parameters of drive. In lock state, if you press and hold the key for 1s to enter the shortcut mode, the LED displays the values of selected parameters. If you press the key, the LED displays the next parameter ID. If you release the key, the LED displays the parameter value.

In shortcut mode, if no key acts within 1min, the speed or fault display interface automatically appears.

Parameters displayed in shortcut mode:

ID	DEFINITION	RANGE	UNIT
SPD	Speed feedback	[-6000,6000]	rpm
CUR	Current feedback	[0,000,0]	Α
RES	Resolver feedback	[0,4096]	-
PRS	Pressure feedback	[0,500]	bar
PIDS	PID step no.	[0,3]	-

5.2.3 Quick setup mode

If you press the key to select the quick setup mode, the LED value places display "E--xx", in which "xx" indicates a parameter ID. You can press the or key to select a parameter ID. When you press and hold the key and then release it, the selection is completed. Then the LED value places display the parameter value. If you want to modify a parameter, you can press the key to move the blinking place and press the key to change the value of the blinking place. After the value is modified, press and hold the key and release it. Then the modification is automatically saved and blinking stops. If you press the or key again at this time, you can modify the parameter again.

The places which can be modified blink. Press the PRG key to exit.

Code	Definition	Range	Default	Unit
E00	Enabling run Press and hold the DATA Key to enter the run enabling mode. The LED displays the ON or OFF state of run enabling. Press and hold the Key and then release it to switch the state.	OFF: Disable ON: Enable	Related to IO level enabling of drive	
E01	PHYSIS motor model selection After the access, the LED displays Select the sequence number at the first two places, and select the motor model code at the last three places. Press the or key to select the required motor. Press and hold the way and then release it. Then the LED displays for you to set the motor. If the setting succeeds, the LED displays the selected motor model. If the setting failed, the LED displays		E01010F173	
E02	Pump model selection	For details,	PUMP 100	

Code	Definition	Range	Default	Unit
	After the access, the LED displays Select the sequence number at the first two places, and select the oil pump displacement at the last three places. Press the or key to select the required pump. Press and hold the key and then release it. Then the LED displays for you to set the pump. If the setting succeeds, the LED displays the	see the oil pump model table.	mL/r	
	selected pump model. If the setting failed, the LED displays After the access to the pressure feedback zero calibration, the LED displays the analog voltage			
E03	tealibration, the LED displays the analog voltage feedback of pressure sensor. Press and hold the key and release it for calibration. Then the LED displays			
	succeeds, the LED displays . If the calibration failed, the LED displays .			
E04	Measuring the initial angle The initial angle can be measured only when the run enabling state is OFF. Press and hold the well angle measuring menu. Then the LED displays the previous resolver offset. Press and hold the well angle measuring menu. Then the LED displays the previous resolver offset. Press and hold the well angle. If the LED displays is being performed. If the measuring is completed, the LED displayed the actual measured offset. If the measuring failed, the LED displays During measuring, you can press the MODE key to exit.			
E05	Full pressure scale range This value also determines the max. pressure. In addition, it also adjusts the pressure reference gain so that when the pressure reference input is 9.99V, the pressure reference corresponds to the recently set pressure full scale range value. After the access, the LED displays the recently set full	[1500]	175	bar

Code	Definition	Range	Default	Unit
	pressure scale range value. Press the key to change to the required value. Press and hold the key and then release it to confirm the value.			
E06	Full flow scale range This value also determines the max. flow. In addition, it also adjusts the flow reference gain so that when the flow reference input is 9.99V, the flow reference corresponds to the recently set flow full scale range value. After the access, the LED displays the recently set full flow scale range value. Press the key to change to the required value. Press and hold the	[1,2400]	200	L/min
E07	then release it to confirm the value. Pressure zero calibration Press and hold the LED displays the pressure reference analog value. and hold the and then release it for zero calibration. Then the LED displays LED displays	Analog voltage range		V
E08	Full pressure scale range calibration Press and hold the key and then release it for access. Then the LED displays the actual pressure reference analog value. After confirming the value, press and hold the release it for zero calibration. Then the LED displays If the calibration succeeds, the LED displays If the calibration failed, the LED displays	Analog		V

Code	Definition	Range	Default	Unit
E09	Flow zero calibration Press and hold the for access. Then the LED displays the flow reference analog value. and hold the and then release it for zero calibration. Then the LED displays If the calibration succeeds, the LED displays Calibration failed, the LED displays	Analog voltage range		V
E10	Full flow scale range calibration Press and hold the ENT key and then release it for access. Then the LED displays the actual flow reference analog value. After confirming the value, press and hold the ENT key and then release it for zero calibration. Then the LED displays the LED displays If the calibration failed, the LED displays			V
E11	Writing parameters Press and hold the ENT key and then release it for access. Then the LED displays Press and hold the key and then release it to start parameter writing. Then the LED displays If the writing succeeds, the LED displays If the calibration failed, the LED displays			
E12	Jogging Press and hold the key and then release it to enter the jogging mode. Then the LED displays or key to run the motor forward or reversely. Press the key to exit the jogging mode and return to the "Exx" menu.	: Jog forward : Jog		

Code	Definition	Range	Default	Unit
E13	Enabling diagnosis Press and hold the diagnosis enabling mode. The LED displays or and hold the and hold the level and then release it to switch the state.	OFF: Disable ON: Enable	OFF	
E14	Motor parameter autotuning Diagnosis enabling takes effect only when motor parameter autotuning is enabled. Press and hold the wey and then release it to enter the motor parameter autotuning menu. Then the LED displays "0". After selecting a parameter autotuning mode, and hold the wey and then release it to start autotuning motor parameters. Then the LED displays which indicates autotuning. If autotuning succeeds, the LED displays If autotuning failed, the LED displays . If autotuning failed, the LED displays LESS key to exit and return to the "Exx" menu.	0: Disable 1: Dynamic 2: Static 1 3: Static 2	0: Disable	
E15	Pressure sensor model selection Press and hold the RENT key and then release it for access. Select a pressure sensor model. Press and hold the RENT key and then release it for setting. You can press the RENT key to exit and return to the "Exx" menu.	0–250bar	10V	
E16	Pressure proportional gain Press and hold the Keyr and then release it for access. Press the or key to set parameters. Press and hold the Keyr key and then release it for setup. You can press the key to exit and return to the "Exx" menu.		13000	

Code	Definition	Range	Default	Unit
E17	Pressure integral gain Press and hold the Press an	[0,32767]	100	
E18	Speed proportional gain 0 Press and hold the Relation of Relation	[0,32767]	6000	
E19	Speed integral gain 0 Press and hold the Press and	[0,32767]	120	
E20	Speed proportional torque boost Press and hold the key and then release it for access. Press the parameters. Press and hold the key to set then release it for setup. You can press the key to exit and return to the "Exx" menu.	[0,1000]	0	%
E21	Speed integral torque boost Press and hold the RY key and then release it for access. Press the or key to set parameters. Press and hold the RY key and then release it for setup. You can press the Rey to exit and return to the "Exx" menu.	[0,1000]	0	%
E22	Max. speed for pump reverse run Press and hold the RNT key and then release it for access. Press the or key to set	[0,-6000]	-300	Rpm

Code	Definition	Range	Default	Unit
	parameters. Press and hold the Akey and then release it for setup. You can press the key to exit and return to the "Exx" menu.			
E23	Reverse torque upper limit Press and hold the Rent key and then release it for access. Press the or key to set parameters. Press and hold the Rent key and then release it for setup. You can press the Rest to exit and return to the "Exx" menu.	[0,100]	100	%
E24	Overpressure protection threshold Press and hold the RY key and then release it for access. Press the or key to set parameters. Press and hold the RY key and then release it for setup. You can press the Rey to exit and return to the "Exx" menu.	[0,500]	195	bar
E25	Pump stuck detection Press and hold the Relation key and then release it for access. Press the or key to set parameters. Press and hold the Relation key and then release it for setup. You can press the Relation key to exit and return to the Rex menu.	0: Disable 1: Enable	1	
E26	Analog channel zero-drift autotuning Enable the autotuning. The LED displays Data Entropy Cata	0: Disable 1: Enable	0	

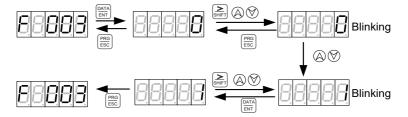
5.2.4 Monitoring mode

If you press the FRC key to select the monitoring mode, the value places on the LED display "d--xx", in which "xx" indicates a parameter ID. You can press the or select a parameter ID. If you press the RRC key after the selection, the LED value places display the parameter value. Then you can press the RRC key to exit.

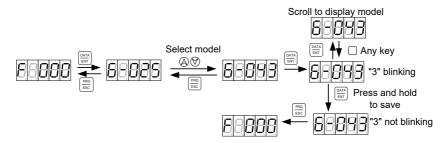
X In monitoring mode, if no key acts within 1min, the speed feedback display or fault display interface in shortcut mode automatically appears.

Parameters in monitoring mode:

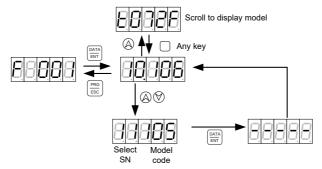
CODE	NAME	RANGE	UNIT
d00	Flow reference	[0,2400.0]	L/min
d01	Pressure	[0500,0]	bar
doi	reference	[0300,0]	Dai
d02	System fault	System fault alarm(s)	
d03	Motor current	[0,900.0] (Valid value)	Α
d04	AC voltage	[0,500]	Vrms
d05	DC voltage	[0800]	V
d06	Torque limit	[0,1800]	Nm
d07	Speed feedback	[-6000,6000]	Rpm
d08	Resolver feedback	[0,4096]	-
d09	Pressure feedback	[0,500]	bar
d10	Torque feedback	[-1800,1800]	Nm
d11	Running mode	3: Speed mode 4: Process mode	
d12	Motor temperature	[-52244]	°C
d13	Drive temperature	[-46244]	°C
d14	Ambient temperature	[-18114]	°C
d15	Machine information	[0999]	
d16	Software version (DSP)		
d17	Panel software version		
d18	System max. pressure	[0500,0]	bar
d19	System max. flow	[0,2400.0]	L/min
d20	Power	[0.00,327.67]	kW
d21	Combining type	0: Single pump. 1: Hybrid. 2: Multiple pumps. 3: Multiple modes. 4: Communication with two models	


CODE	NAME	RANGE	UNIT
		5: Communication with four models	
d22	Actual PID step	[0,3]	
d23	Flow reference voltage	[0,10.00]	V
d24	Pressure reference voltage	[0,10.00]	V
d25	Pressure feedback voltage	[0,10.00]	V
d26	Output voltage	[-1000,1000]	V
d27	Digital input/output	When the input signal is valid, the LED turns off. For example, when I1 has signal, the LED turns off; when I1 has no signal, the LED turns on (when S_ON input port indicator is on, it is high level). When the output signal is invalid, the LED turns on; when the output signal is valid, the LED turns off.	
d28	Motor configuration table version		
d29	Motor power	[-327.67,327.67]	kW
d30	Energy consumption for this run	[0999,9]	kW.h
d31	Five low bits of accumulative power consumption	[0999,9]	kW.h
d32	Five high bits of accumulative power	[0,9999]	1000 kW.h

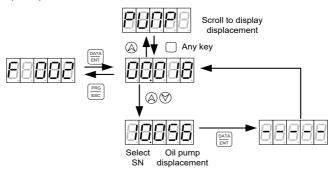
CODE	NAME	RANGE	UNIT
	consumption		
d33	Motor power factor	[0,1.00]	


5.2.5 Setup mode

If you press the key to select the setup mode, the LED value places display "F--xxx", in which "xxx" indicates a parameter ID. You can press the or key to select a parameter value. If you press the select a parameter value. If you press the select parameter value. If you press the or key, the changeable places blink. If you want to modify a parameter, you can press the or key to move the blinking place and press the or key to change the value of the blinking place. After the value is modified, press and hold the key and release it. Then the modification is automatically saved and blinking stops. If you press the select a parameter again. The places which can be modified blink. Press the key to select a parameter again.


Note: The drive, motor, and oil pump selection is different from other parameter selection. Parameter setting flowchart:

Note: For calibration commands, such as pressure linear zero calibration, after the setting: if the LED displays 0, the calibration succeeds; if the LED always displays 1, the calibration failed. Drive setup flowchart:


Motor setup flowchart:

Select SN: sequence number for a motor model

Model code: digital code for a motor model

Oil pump setup flowchart:

Select SN: sequence number for an oil pump model

In setup mode, if no key acts within 1min, the speed feedback display or fault display interface in shortcut mode automatically appears.

Drive selection SN	LED display mode	Drive model	Drive model code
1	A-018	PH600.007.43ARSF	80
2	A-025	PH600.011.43ARSF	81
3	A-032	PH600.015.43ARSF	82
4	A-038	PH600.018.43ARSF	83
5	A-045	PH600.022.43ARSF	84
6	A-060	PH600.030.43ARSF	85
7	A-075	PH600.037.43ARSF	86

Table 5-1 Drive model table

Drive selection SN	LED display mode	Drive model	Drive model code
8	A-092	PH600.045.43ARSF	88
9	A-115	PH600.055.43ARSF	89
10	A-150	PH600.075.43BRSF	90
11	A-180	PH600.090.43BRSF	91
12	A-215	PH600.110.43BRSF	92

Table 5-2 Motor model table

Motor selection	Motor model	Model code	Brand	Temperature winding resistor model
0	E01004F153	263	PHYSIS	PTC130
1	E01004F133	203	PHYSIS	PTC130
2	E01004F173 E01004F203	232	PHYSIS	PTC130
3	E01004F203 E01004F303	276	PHYSIS	PTC130
4				
	E01005F153	264	PHYSIS	PTC130
5	E01005F173	233	PHYSIS	PTC130
6	E01005F203	234	PHYSIS	PTC130
7	E01005F303	277	PHYSIS	PTC130
8	E01007F153	265	PHYSIS	PTC130
9	E01007F173	235	PHYSIS	PTC130
10	E01007F203	236	PHYSIS	PTC130
11	E01008F103	278	PHYSIS	PTC130
12	E01008F153	266	PHYSIS	PTC130
13	E01008F173	237	PHYSIS	PTC130
14	E01008F203	238	PHYSIS	PTC130
15	E01008F303	279	PHYSIS	PTC130
16	E01010F153	267	PHYSIS	PTC130
17	E01010F173	239	PHYSIS	PTC130
18	E01010F203	240	PHYSIS	PTC130
19	E01010F303	280	PHYSIS	PTC130
20	E01012F153	268	PHYSIS	PTC130
21	E01012F173	241	PHYSIS	PTC130
22	E01012F203	242	PHYSIS	PTC130
23	E01012F303	281	PHYSIS	PTC130
24	E01013F153	269	PHYSIS	PTC130
25	E01013F173	243	PHYSIS	PTC130
26	E01013F203	244	PHYSIS	PTC130

Motor selection SN	Motor model	Model code	Brand	Temperature winding resistor model
27	E01215F153	270	PHYSIS	PTC130
28	E01215F173	245	PHYSIS	PTC130
29	E01215F203	246	PHYSIS	PTC130
30	E01215F303	282	PHYSIS	PTC130
31	E01220F153	271	PHYSIS	PTC130
32	E01220F173	247	PHYSIS	PTC130
33	E01220F203	248	PHYSIS	PTC130
34	E01225F153	272	PHYSIS	PTC130
35	E01225F173	249	PHYSIS	PTC130
36	E01225F203	250	PHYSIS	PTC130
37	E01230F153	273	PHYSIS	PTC130
38	E01230F173	251	PHYSIS	PTC130
39	E01230F203	252	PHYSIS	PTC130
40	E01235F153	274	PHYSIS	PTC130
41	E01235F173	253	PHYSIS	PTC130
42	E01235F203	254	PHYSIS	PTC130
43	E01235F303	283	PHYSIS	PTC130
44	E01240F153	275	PHYSIS	PTC130
45	E01240F203	256	PHYSIS	PTC130
46	E01806F103		PHYSIS	PTC130
47	E01808F103		PHYSIS	PTC130
48	E01809F103		PHYSIS	PTC130
49	E01811F103		PHYSIS	PTC130
50	E01813F103		PHYSIS	PTC130
51	E01815F103		PHYSIS	PTC130
52	E01817F103		PHYSIS	PTC130
53	E01806F123		PHYSIS	PTC130
54	E01808F123		PHYSIS	PTC130
55	E01809F123		PHYSIS	PTC130
56	E01811F123		PHYSIS	PTC130
57	E01813F123		PHYSIS	PTC130
58	E01815F123		PHYSIS	PTC130
59	E01817F123		PHYSIS	PTC130
60	E01806F153		PHYSIS	PTC130
61	E01808F153		PHYSIS	PTC130

Motor selection	Motor model	Model code	Brand	Temperature winding resistor model
62	E01809F153		PHYSIS	PTC130
63	E01811F153		PHYSIS	PTC130
64	E01813F153		PHYSIS	PTC130
65	E01815F153		PHYSIS	PTC130
66	E01817F153		PHYSIS	PTC130
67	E01806Y103		PHYSIS	PTC130
68	E01808Y103		PHYSIS	PTC130
69	E01809Y103		PHYSIS	PTC130
70	E01806Y123		PHYSIS	PTC130
71	E01808Y123		PHYSIS	PTC130
72	E01809Y123		PHYSIS	PTC130
73	E01811Y123		PHYSIS	PTC130
74	E01813Y123		PHYSIS	PTC130
75	E01815Y123		PHYSIS	PTC130
76	E01817Y123		PHYSIS	PTC130
77	E01806Y153		PHYSIS	PTC130
78	E01808Y153		PHYSIS	PTC130
79	E01809Y153		PHYSIS	PTC130
80	E01811Y153		PHYSIS	PTC130
81	E01813Y153		PHYSIS	PTC130
82	E01815Y153		PHYSIS	PTC130
83	E01817Y153		PHYSIS	PTC130
84	E01806Y173		PHYSIS	PTC130
85	E01808Y173		PHYSIS	PTC130
86	E01809Y173		PHYSIS	PTC130
87	E01811Y173		PHYSIS	PTC130
88	E01813Y173		PHYSIS	PTC130
89	E01815Y173		PHYSIS	PTC130
90	E01817Y173		PHYSIS	PTC130

Table 5-3 Oil pump model table

Oil pump selection SN	Oil pump model	Displacement mL/r	Default max. flow
0	PUMP 018 mL/r	18	40 L/min
1	PUMP 025 mL/r	25	55 L/min
2	PUMP 028 mL/r	28	62 L/min

Oil pump selection SN	Oil pump model	Displacement mL/r	Default max. flow
3	PUMP 031 mL/r	31	68 L/min
4	PUMP 032 mL/r	32	70 L/min
5	PUMP 036 mL/r	36	79 L/min
6	PUMP 037 mL/r	37	81 L/min
7	PUMP 040 mL/r	40	88 L/min
8	PUMP 045 mL/r	45	99 L/min
9	PUMP 050 mL/r	50	110 L/min
10	PUMP 056 mL/r	56	123 L/min
11	PUMP 062 mL/r	62	136 L/min
12	PUMP 063 mL/r	63	139 L/min
13	PUMP 064 mL/r	64	141 L/min
14	PUMP 071 mL/r	71	142 L/min
15	PUMP 075 mL/r	75	150 L/min
16	PUMP 078 mL/r	78	156 L/min
17	PUMP 080 mL/r	80	160 L/min
18	PUMP 090 mL/r	90	180 L/min
19	PUMP 100 mL/r	100	200 L/min
20	PUMP 101 mL/r	101	202 L/min
21	PUMP 120 mL/r	120	240 L/min
22	PUMP 125 mL/r	125	250 L/min
23	PUMP 130 mL/r	130	260 L/min
24	PUMP 140 mL/r	140	280 L/min
25	PUMP 150 mL/r	150	300 L/min
26	PUMP 160 mL/r	160	320 L/min

Note: For dual-pump configuration, select the model with max. displacement.

Table 5-4 Parameters in the setup mode

Code	Definition	Range	Default	Unit
F000	Drive model selection	For details, see the drive model table.	Same as the drive nameplate	
F001	Motor model selection		07.062	
F002	Pump model selection	For details, see the oil pump model table.	19.100	
F003	Pressure feedback zero calibration	0: No calibration 1: Calibration	0	

Code	Definition	Range	Default	Unit
F004	Pressure calibration	0: Straight line	0	
1004	mode	1: Fold line	<u> </u>	
F005	Flow calibration	0: Straight line	0	
. 000	mode	1: Fold line		
F006	Pressure calibration	0: Disable 1: Straight-line zero place 2: Straight-line scale range 3: Fold-line point 0 4: Fold-line point 1 5: Fold-line point 2 6: Fold-line point 3 7: Fold-line point 4 8: Fold-line point 5 9: Fold-line point 6 10: Fold-line point 7 11: Fold-line point 8 12: Fold-line point 9 13: Fold-line point 10 14: Fold-line point 11 15: Fold-line point 12	0	After the setting for straight-line zero place or scale range calibration, if the LED displays 0, the calibration succeeds; if the LED displays a nonzero value, the calibration failed. After the setting for fold-line calibration, if the LED displays the original value, the calibration succeeds; if the LED displays 1, the calibration failed. After the
F007	Flow calibration	O: Disable 1: Straight-line zero place 2: Straight-line scale range 3: Fold-line point 0 4: Fold-line point 1 5: Fold-line point 2 6: Fold-line point 3 7: Fold-line point 4 8: Fold-line point 5 9: Fold-line point 6 10: Fold-line point 7	0	setting for straight-line zero place or scale range calibration, if the LED displays 0, the calibration succeeds; if the LED displays a non-

Code	Definition	Range	Default	Unit
		11: Fold-line point 8 12: Fold-line point 9		zero value, the calibration
		13: Fold-line point 10		failed. After the
		14: Fold-line point 11		setting for fold-
		15: Fold-line point 12		line calibration,
		·		if the LED
				displays the
				original value, the calibration
				succeeds; if
				the LED
				displays 1, the
				calibration
				failed.
				Average
F008	Pressure filtering	[1,32]	6	sampling count
1 000		[1,02]	Ü	of moving
				(1ms)
				Average
F009	Flow filtering	[1,32]	6	sampling count
1 000				of moving
				(1ms)
	Full pressure scale			
	range			
	This value also			
	determines the max.			
	pressure. In addition,			
	it also adjusts the			
F010	pressure reference	[1500]	175	bar
	gain so that when the			
	pressure reference			
	input is 9.99V, the			
	pressure reference			
	corresponds to the			
	recently set pressure			
	full scale range value.			
	Full flow scale range			
F011	This value also	[1,2400]	200	L/min
	determines the max.	. ,1		
	flow. In addition, it			

Code	Definition	Range	Default	Unit
	also adjusts the flow			
	reference gain so that			
	when the flow			
	reference input is			
	9.99V, the flow			
	reference			
	corresponds to the			
	recently set flow full			
	scale range value.			
F012	Max. pressure	[0,500]	180	bar
F013	Max. flow	[0,2400]	200	L/min
F014	Speed proportional gain 0	[0,32767]	6000	
F015	Speed integral gain 0	[0,32767]	120	
F016	Pressure feedback gain	[0,32767]	8182	
F017	Pressure reference rise slope	[0,32767]	16000	0.007629 bar/ms
F018	Pressure reference fall slope	[0,32767]	16000	0.007629 bar/ms
F019	Pressure proportional gain 0	[0,32767]	13000	
F020	Pressure integral gain 0	[0,32767]	100	
F021	Reserved			
F022	Pressure proportional gain 1	[0,32767]	13000	
F023	Pressure integral gain 1	[0,32767]	100	
F024	Reserved			
F025	Pressure proportional gain 2	[0,32767]	13000	
F026	Pressure integral gain 2	[0,32767]	100	
F027	Reserved			
F028	Pressure proportional gain 3	[0,32767]	13000	
F029	Pressure integral	[0,32767]	100	

Code	Definition	Range	Default	Unit
	gain 3			
F030	Reserved	[0,32767]	0	
F031	Pump displacement	[0,32767]	100	mL/r
F032	Pump leakage	[0,1.00]	0.00	L/min/bar
F033	Max. speed for pump reverse run	[0,-6000]	-300	rpm
F034	Max. motor rotation speed	[0,6000]	2200	rpm
F035	DC voltage calibration	[0,800] (Only slight change allowed)	DC voltage at menu access	V
F036	AC voltage calibration	[0,800] (Only slight change allowed)	AC voltage at menu access	V
F037	Enabling base flow	0: No base flow 1: With base flow	1	
F038	Base flow pressure	[0500,0]	3.00	bar
F039	Base flow	[0327,67]	0.95	L/min
F040	Overshoot threshold	[5,50]	30	bar
F041	Motor rotation direction	0: Forward	0	
1041		1: Reverse		
F042	Resolver direction	Default direction Opposite direction	0	
F043	Back pressure method	0: Manual 1: Automatic	0	
F044	Pressure sensor model selection	5V 10V 400bar	10V	
F045	Plunger pump model selection	Single displacement Dual displacement	0	
F046	Pump displacement rate	[0,100.0]	20	%
F047	Wobble-disk switchover pressure threshold	[0, 500.0]	195	bar
F048	Displacement pressure judging delay	[0,32767]	100	ms
F049	DA1	0: Pressure reference	1	

Code	Definition	Range	Default	Unit
		1: Pressure feedback		
		2: Flow reference		
		3: Flow feedback		
		4: Speed reference		
		5: Speed feedback		
		6: Torque reference		
		7: Torque feedback		
		8: Resolver feedback		
		9: DC voltage		
		10: Phase current		
		11: Fault word 1		
		12: Fault word 2		
		13: Communication		
		command		
F050	DA1 max. value	[-32767,32767]	16384	
F051	DA1 min. value	[-32767,32767]	0	
		0: Pressure reference		
		1: Pressure feedback		
		2: Flow reference		
		3: Flow feedback		
		4: Speed reference		
		5: Speed feedback		
		6: Torque reference		
F052	DA2	7: Torque feedback	5	
		8: Resolver feedback		
		9: DC voltage		
		10: Phase current		
		11: Fault word 1		
		12: Fault word 2		
		13: Communication		
		command		
F053	DA2 max. value	[-32767,32767]	16384	
F054	DA2 min. value	[-32767,32767]	-16384	
F055	DA output	[-32767, 32767]	0	
F056	Rise delay of wobble- disk switchover	[0,32767]	10	ms
F057	Fall delay of wobble- disk switchover	[0,32767]	10	ms

Code	Definition	Range	Default	Unit
F058	Speed switchover upper limit	[0,6000]	1200	rpm
F059	Speed switchover lower limit	[0,6000]	200	rpm
F060	Zero-place dead zone of flow reference	[0.00,100.00]	0.5	%
F061	Zero-place dead zone of pressure reference	[0.00,100.00]	0.5	%
F062	Zero-place dead zone of pressure feedback	[0.00,100.00]	0.0	%
F063	OUT2 conduction pressure coefficient	[0.00,100.00]	90.0	%
F064	Negative torque suppression control	0: Disable 1: Enable	0	
F065	Displacement switchover mode	0: Overvoltage 1: Over retaining-pressure	0	
F066	Restoring to default	0: Disable 1: Enable	0	
F067	Viewing fault records (displaying fault codes)	1: Fault 1 2: Fault 2 3: Fault 3 4: Fault 4 5: Fault 5 After the access, the LED displays the most recent fault (SN: 1). You can press the length of the previous fault (SN: 2). You can press the length key to display the previous fault (SN: 2). You can press the length key to display the following information at a fault: length of length of the previous fault (SN: 2). You can press the length key to display the following information at a fault: length of length of the previous feedback (rpm) length of the previous feedback (Nm)	Present fault code	

Code	Definition	Range	Default	Unit
		(hour) , fault time (hour) , phase-A current (Apk) , phase-B current (Apk) , phase-B current (Apk) , drive temperature (°C) , motor temperature (°C) , speed reference (rpm) , torque reference (Nm) , output voltage (V) , and fault type	Bollan	Sin.
F068	Writing parameters	Writing parameters Press and hold the key and then release it for access. Then the LED displays Press and hold the key and then release it to start parameter writing. Then the LED displays If the writing succeeds, the LED displays If the writing failed, the LED displays	SAVE	
F069	Password for keypad unlocking	[0,99999]	00000	-

Code	Definition	Range	Default	Unit
F070	Motor rated voltage	[0800]	351	V
F071	Motor rated current	[0900]	51	А
F072	Motor rated speed	[0,6000]	1467	rpm
F073	Motor rated frequency	[0600]	97.7	Hz
F074	Motor counter-emf	[0.0,800.0]	199.9	V/Krpm
F075	Motor temperature sensor type	0: NTC 1: PTC 2: KTY84 3: PT1000	3	
F076	Reserved			
F077	Reserved			
F078	Reserved			
F079	Pressure sensor scale range	[0, 500.0]	250.0	bar
F080	Pressure feedback adjustment coefficient	[50200]	100	%
F081	Min. value of flow reference	[0,2400.0]	0.0	L/min
F082	Enabling overmodulation	[0,1]	0	1: Enable
F083	Overmodulation rate	[100115]	105	%
F084	Carrier frequency	[4k,5k,8k,10k,3k,2k,6k]	3k	Hz
F085	Overload protection method	0: Current limiting 1: It protection 2–3: Reserved	0	
F086	Bus overvoltage protection@	[0,1000]	770	V
F087	Bus protection time	[0,30000]	20	5ms
F088	Bus overvoltage protection	[0,1000]	800	V
F089	Bus undervoltage protection@	[0,1000]	380	V
F090	Bus undervoltage protection @time	[0,30000]	150	5ms
F091	Bus undervoltage protection	[0,1000]	320	V

Code	Definition	Range	Default	Unit
F092	Bus undervoltage protection for pipe opening	[0,1000]	315	V
F093	AC overvoltage protection@	[0,1000]	504	V
F094	AC overvoltage protection @time	[0,30000]	300	5ms
F095	AC overvoltage	[0,1000]	1500	V
F096	AC undervoltage protection@	[0,1000]	290	V
F097	AC undervoltage protection @time	[0,30000]	101	5ms
F098	AC undervoltage	[0,1000]	0	V
F099	Power-on timeout time	[0,30000]	2000	5ms
F100	Motor protection temperature	[0,500]	125	°C
F101	Module protection temperature	[0,500]	86	°C
F102	Air protection temperature	[0,500]	400	°C
F103	Overcurrent protection value	[0900]	018→61 025→70 032→110 038→110 045→140 060→200 075→240 092→290 115→380 150→480 180→500 215→562	А
F104	Forward speed protection value	[0,6000]	2700	rpm
F105	Reverse speed protection value	[-6000,0]	-2700	rpm
F106	Overpressure	[0, 500]	195	bar

Code	Definition	Range	Default	Unit
	protection threshold			
F107	Pressure sensor fault value	[0,32767]	0	
F108	ACDC sampling error voltage	[0800]	80	V
F109	Braking resistance heating factor	[0,500]	018–045→35 060–215→40	
F110	Braking resistor cooling factor	[0,500]	1	
F111	Braking resistor overload threshold	[0,30000]	018–045→374 060–215→292	
F112	Motor short-circuit protection value	[0900]	10.0	A
F113	Protection against phase loss	0: Disable 1: Enable	0	
F114	Rectifier overload protection	0: Disable 1: Enable	0	
F115	Speed feedback filtering method	O: Moving average O: Ordinary least squares You need to perform repower on for the setting to take effect.	0	
F116	Low speed proportional gain	[0,32767]	7000	
F117	Low speed integral gain	[0,32767]	140	
F118	Low rotation speed of gain switchover	[0,6000]	5994	rpm
F119	High rotation speed of gain switchover	[0,6000]	5994	rpm
F120	Speed control rigidity	[1,14]	8	-
F121	Motor inertia	[0,0.655]	0.018	kgm²
F122	Motor torque coefficient	[0100,00]	3.31	Nm/Arms
F123	Motor autotuning direction	0: Forward 1: Reverse	0	
F124	Drive rated power	[0.00,327.67]	018→7.50 025→11.00	kW

Code	Definition	Range	Default	Unit
			032→15.00	
			038→18.00	
			045→22.00	
			060→30.00	
			075→37.00	
			092→45.00	
			115→60.00	
			150→75.00	
			180→90.00	
			215→110.00	
			018→18.0	
			025→25.0	
			032→32.0	
			038→38.0	
			045→45.0	
F125	Drive reted current	[0900]	060→60.0	А
F125	Drive rated current		075→75.0	
			092→92.0	
			115→115.0	
			150→150.0	
			180→180.0	
			215→215.0	
F126	Torque limit	[0,1800]	400	Nm
F127	Disturbance	[0200]	0	%
1 127	compensation gain			
	Disturbance		500	Hz
F128	compensation	[0,5000]		
	filtering frequency			
	Disturbance	[0,15]	5	Cycle
F129	compensation			(of speed loop)
	lagging period			(or speed loop)
F130	Overspeed protection time	[0,5000]	100	ms
F131	Flow reference rise	[0.00707]	40000	0.07324
	slope	[0,32767]	16000	(L/min)/ms
F132	Flow reference fall	[0,32767]	16000	0.07324
	slope			(L/min)/ms
F133	Braking resistor fault	0: Disable	1	

Code	Definition	Range	Default	Unit
	detection	1: Enable		
F134	PWM voltage compensation	0: Disable 1: Enable	0	
F135	Pump stuck detection	0: Disable 1: Enable	1	
F136	Oil path depressurization mode	0: Common oil path 1: Self-depressurization oil path	0	
F137	Reverse torque upper limit	[0,100]	100	%
F138	Speed integral torque boost	[0,1000]	0	%
F139	Enabling multi-step PI of speed	0: Disable 1: Enable	0	
F140	Enabling multi-step PI of pressure	0: Disable 1: Enable	0	
F141	Speed proportional gain 1	[0,32767]	7000	
F142	Speed integral gain 1	[0,32767]	140	
F143	Speed proportional gain 2	[0,32767]	7000	
F144	Speed integral gain 2	[0,32767]	140	
F145	Speed proportional gain 3	[0,32767]	7000	
F146	Speed integral gain 3	[0,32767]	140	
F147	Self-depressurization startup speed	[-300300]	250	rpm
F148	Self-depressurization startup pressure	[0, 500]	59	bar
F149	Self-depressurization shutdown pressure	[0, 500]	57	bar
F150	Retaining-pressure feedforward cut-in speed	[-6000,6000]	100	rpm
F151	Retaining-pressure feedforward cut-in pressure	[0, 500]	200	bar

Code	Definition	Range	Default	Unit
F152	Retaining-pressure feedforward gain	[0,32767]	0	
F153	Voltage in full pressure scale range	[0,11.00]	9.99	V
F154	Voltage in full flow scale range	[0,11.00]	9.99	V
F155	Resolver fault detection	0: Disable 1: Enable	1	
F156	PID terminal use purpose	General Only for die-casting machines	0	
F157	DI1 input selection	0: No function	1	
F158	DI2 input selection	1: Fault reset 2: Enabling the drive	2	
F159	DI3 input selection	3: Selection of splitting or	3	
F160	DI4 input selection	combining flow 4: Material storage signal	4	
F161	DI5 input selection	input	6	
F162	DI6 input selection	5: Motor rotation direction 6: PID terminal 1	7	
F163	Reserved	7: PID terminal 2	0	
F164	Reserved	8: PID terminal 3 9: PID terminal 4	0	
F165	Reserved	10: Trigger method	0	
F166	Reserved	selection 11: Enabling inclined-disk control (Over retaining-pressure method) 12: Inclined-disk switchover command 13: Pressure/flow control selection signal 14: Enabling unit follow-up 15: Internal reference 1 16: Internal reference 2 17: Internal reference 3 18: Slave node address selection 1	0	

Code	Definition	Range	Default	Unit
		19: Slave node address		
		selection 2		
		20: Selection 1 of splitting		
		or combining flow		
		21–63: Reserved		
F167	O1 output selection	0: No function	1	
F168	O2 output selection	1: Servo readiness	2	
F169	Reserved	2: Alarm output	0	
		3: I2 terminal status		
F170	R output selection	4: Inclined-disk control	4	
		output		
		5: Output of oil pressure		
F171	Reserved	being reached	5	
		6: Self-depressurization		
		output		
		7–63: Reserved		
E470	Five low bits of	roop 01		
F172	accumulative power	[0999,9]	0.0	kW.h
	consumption			
F470	Five high bits of	10 00001	0	1000 144/ 5
F173	accumulative power	[0,9999]	0	1000 kW.h
	consumption			
F174	Enabling depressurization	0: Disable	0	
F1/4	pressure PI	1: Enable	U	
	Proportion 0 of			
F175	depressurization	[0,32767]	13000	
1 175	pressure drop P	[0,02707]	13000	
	Integral 0 of			
F176	depressurization	[0,32767]	10	
1 170	pressure drop P	[0,02101]	10	
	Proportion 1 of			
F177	depressurization	[0,32767]	13000	
	pressure drop P			
	Integral 1 of			
F178	depressurization	[0,32767]	10	
	pressure drop P	1.,.		
F179	Enabling	0: Disable	0	

Code	Definition	Range	Default	Unit
	depressurization speed PI	1: Enable		
F180	Depressurization speed proportion 0	[0,32767]	6000	
F181	Depressurization speed integral 0	[0,32767]	50	
F182	Depressurization speed proportion 1	[0,32767]	6000	
F183	Depressurization speed integral 1	[0,32767]	50	
F184	High pressure difference 0 of gain switchover	[0,500]	0	bar
F185	Low pressure difference 0 of gain switchover	[0,500]	0	bar
F186	High pressure difference 1 of gain switchover	[0,500]	0	bar
F187	Low pressure difference 1 of gain switchover	[0,500]	0	bar
F188	Pressure proportion 0 with high pressure difference	[0,32767]	8000	
F189	Pressure integral 0 with high pressure difference	[0,32767]	50	
F190	Pressure proportion 1 with high pressure difference	[0,32767]	8000	
F191	Pressure integral 1 with high pressure difference	[0,32767]	50	
F192	Self-depressurization startup delay	[0,32767]	1	ms
F193	Self-depressurization shutdown delay	[0,32767]	2	ms

Code	Definition	Range	Default	Unit
	Pressure at self-			
F194	depressurization low-	[0,500]	30	bar
	pressure switch-on			
	Pressure at self-			
F195	depressurization low-	[0,500]	20	bar
	pressure switch-off			
	Pressure forward			
F196	overshoot	[0,3000.0]	25.0	%
	suppression			
	Pressure reverse			
F197	overshoot	[0,3000.0]	100.0	%
	suppression			
F198	Multi-step flow fall	[0.22767]	16000	0.07324
F190	slope 1	[0,32767]	10000	(L/min)/ms
	Forward rotation	0: One step		
F199	depressurization	1: Two step	0	
	method	2: Three step		
	Depressurization	[0,500] 45		
F200	step-2 pressure		45	bar
	threshold			
	Depressurization			
F201	step-3 pressure	[0,500]	4	bar
	threshold			
F202	Depressurization	[0,32767]	125	
F202	step-2 fall slope	[0,32707]	125	0.007629
F203	Depressurization	[0,32767]	10	bar/ms
F203	step-3 fall slope	[0,32707]	10	
	Multi-step			
F204	depressurization	[0,32767]	9000	
	pressure proportion			
	Multi-step			
F205	depressurization	[0,32767]	10	
	pressure integral			
	Multi-step			
F206	depressurization	[0,32767]	6000	
	speed proportion			
F207	Multi-step	[0,32767]	50	
F20 <i>1</i>	depressurization	[0,02101]	30	

Code	Definition	Range	Default	Unit
	speed integral			
F208	Depressurization pressure PI fall threshold	[0,500]	7	bar
F209	Low-pressure reverse rotation speed limited	[-6000,6000]	-300	rpm
F210	Multi-step depressurization startup delay	[0,32767]	5	ms
F211	Multi-step depressurization end delay	[0,32767]	500	ms
F212	Enabling pressure- boost speed PI	0: Disable 1: Enable	0	
F213	Enabling depressurization bidirectional control	0: Disable 1: Enable	0	
F214	Voltage utilization in flux-weakening control	[10.0,195.0]	85.0	%
F215	Flux-weakening control switch	0: Calculation 1: Closed loop 2: Disable 3: Calculation + closed loop	3	
F216	Closed-loop flux- weakening bandwidth	[0,1000]	20	Hz
F217	Motor type	Surface-mounted PMSM Salient pole PMSM	0	
F218	Flux-weakening depth of salient pole motor	[0,100]	50	%
F219	Motor rated power	[0.1,3000.0]	24.8	Kw
F220	Pole pairs of motor	[1,64]	4	р
F221	Pole pairs of encoder	[1,64]	1	p
F222	D-axis inductance of synchronous motor 0	[0,327.67]	Model confirmation	mH
F223	D-axis inductance of synchronous	[0,327.67]	Model confirmation	mH

Code	Definition	Range	Default	Unit
	motor 1			
F224	D-axis inductance of synchronous motor 2	[0,327.67]	Model confirmation	mH
F225	Q-axis inductance of synchronous motor 0	[0,327.67]	Model confirmation	mH
F226	Q-axis inductance of synchronous motor 1	[0,327.67]	Model confirmation	mH
F227	Q-axis inductance of synchronous motor 2	[0,327.67]	Model confirmation	mH
F228	Back potential of synchronous motor 0	[0,3276.7]	Model confirmation	Vrms/1krpm
F229	Back potential of synchronous motor	[0,3276.7]	Model confirmation	Vrms/1krpm
F230	Back potential of synchronous motor 2	[0,3276.7]	Model confirmation	Vrms/1krpm
F231~F 241	reserve			
F242	Pressure PI output filtering frequency 0	[0,800.0]	0	Hz
F243		[0,800.0]	0	Hz
F244	Pressure holding Low speed PI is enabled	[0,1]	0	
F245	The low-speed PI pressure for maintaining pressure is enabled	[0,1]	0	
F246	Low speed pressure PI cut delay time	[0,32767]	2000	ms
F247	Pressure holding low speed pressure proportional gain	[0,32767]	7500	
F248	Low speed pressure	[0,32767]	30	

Code	Definition	Range	Default	Unit
	integral gain for			
	holding pressure			

5.2.6 Debug mode

PRG
If you press the FRG key to select the debug mode, the LED displays "hxx", in which "xx"
indicates a parameter ID. You can press the or key to select a parameter ID. When
you press and hold the experience when release it, the selection is completed. Then the LED
displays the parameter value. If you want to modify a parameter, you can press the key
to move the blinking place and press the or key to change the value of the blinking
place. After the value is modified, press and hold the place it. Then the
modification is automatically saved and blinking stops. If you press the local production or local production of local production is automatically saved and blinking stops. If you press the local production of local production is automatically saved and blinking stops. If you press the local production is automatically saved and blinking stops. If you press the local production is automatically saved and blinking stops. If you press the local production is automatically saved and blinking stops. If you press the local production is automatically saved and blinking stops. If you press the local production is automatically saved and blinking stops. If you press the local production is automatically saved and blinking stops. If you press the local production is automatically saved and blinking stops. If you press the local production is automatically saved and blinking stops. If you press the local production is automatically saved and blinking stops. If you press the local production is a local production in the production in the production is a local production in the production in the production is a local production in the production in the production is a local production in the production in the production is a local production in the production in the production is a local production in the production in the production is a local production in the production in the production in the production is a local production in the producti
key again at this time, you dan mount the parameter again. The places which can be mounted
blink. Press the PRG Key to exit.

Note: In debug mode, if no key acts within 1min, the speed feedback display or fault display interface in shortcut mode automatically appears.

Parameters in the setup mode:

Code	Definition	Range	Default	Unit
h00	Enabling rup	0: Disable	Related to IO level	
1100	Enabling run	1: Enable	enabling of drive	
h01	Enabling diagnosis	0: Disable	0	
1101	Litability diagriosis	1: Enable	U	
		0: Disable		
	Diagnosis content	1: Measure the initial angle		
h02	(Valid only when	2: Enable jogging	0	
	diagnosis enabled)	3–5: Invalid		
		6: Drive test		
	Jogging (Valid only when	: Jog forward		
h03		Sog lorward	0	
	diagnosis enabled)	: Jog reversely		
h04	Control mode	3: Speed mode	4	
1104	Control mode	4: Process mode	7	
	Speed reference			
h05	(Valid in speed	Motor model related	0	rpm
	control mode)			
	Process command	0: Digital input		
h06	mode	1: Analog input	1	
	mode	2: Continuous CAN		

Code	Definition	Range	Default	Unit
		communication input 3: Continuous RS485 communication input 4: CANopen communication input		
		5: EtherCAT communication input 6: Internal reference 7: PROFINET communication input		
h07	Flow reference (Process command mode is communication input)	[0, Max. flow]	0.0	L/min
h08	Pressure reference (Process command mode is communication input)	[0, Max. pressure]	0.0	bar
h09	Max. jogging speed	The motor runs at the max. speed when you press or . [0,100]	15	rpm
h10	Resolver offset	[0,4095]	0	
h11	Motor parameter autotuning (Valid only when diagnosis enabled)	0: Disable 1: Dynamic 2: Static 1 3: Static 2	0	
h12	Enabling advanced parameter operation	11111: Disable 99999: Enable Other values: No functions	00000	
h13	Clearing faults	0: Disable. 1: Enable	0	
h14	Internal flow reference 0	[0, 100.0]	0.0	%
h15	Internal flow reference 1	[0, 100.0]	0.0	%
h16	Internal flow reference 2	[0, 100.0]	0.0	%
h17	Internal flow reference 3	[0, 100.0]	0.0	%
h18	Internal flow reference 4	[0, 100.0]	0.0	%

Code	Definition	Range	Default	Unit
h19	Internal flow reference 5	[0, 100.0]	0.0	%
h20	Reserved	[0, 100.0]	0.0	
h21	Reserved	[0, 100.0]	0.0	
h22	Internal pressure reference 0	[0, 100.0]	0.0	%
h23	Internal pressure reference 1	[0, 100.0]	0.0	%
h24	Internal pressure reference 2	[0, 100.0]	0.0	%
h25	Internal pressure reference 3	[0, 100.0]	0.0	%
h26	Internal pressure reference 4	[0, 100.0]	0.0	%
h27	Internal pressure reference 5	[0, 100.0]	0.0	%
h28	Speed integral torque boost 1	[0, 100.0]	0.0	8%
h29	Speed proportional torque boost 1	[0, 100.0]	0.0	8%
h30	Channel of running commands	0: Keypad 1: Terminal	1	

5.2.7 Multi-pump mode

If you press the key to select the multi-pump mode, the LED displays "P--xx", in which "xx" indicates a parameter ID. You can press the or key to select a parameter ID. When you press and hold the key and then release it, the selection is completed. Then the LED displays the parameter value. If you want to modify a parameter, you can press the key to move the blinking place and press the or key to change the value of the blinking place. After the value is modified, press and hold the key and release it. Then the modification is automatically saved and blinking stops. If you press the key again at this time, you can modify the parameter again. The places which can be modified blink. Press the key to exit.

Note: In multi-pump mode, if no key acts within 1min, the speed feedback display or fault display interface in shortcut mode automatically appears.

Code	Definition	Range	Default	Unit
P00	Enabling the network	0: Disable	0	

Code	Definition	Range	Default	Unit
		1: Enable		
P01	Opening network	0: Close	Related to IO level	
PUI	pipes	1: Open	enabling of drive	
		0: Single pump		
		1: Hybrid		
		2: Multiple pumps		
P02	Combining type	3: Multiple modes	0	
		4: Communication with two models		
		5: Communication with four		
		models		
P03	Node No.	[0,15]	0	
P04	Slave count	[0,15]	0	
		0: Independent unit		
Doc	NI - d - 4	1: Control unit	0	
P05	Node type	2: Follow-up unit	0	-
		3: Flow-loop unit		
P06	Flow switch-in threshold	[0100,0]	25.0	%
P07	Flow switch-in	[0100,0]	5.0	%
1 07	hysteresis upper limit	[0100,0]	5.0	70
P08	Flow switch-in	[0100,0]	2.5	%
	hysteresis lower limit	[]	-	
P09	Multi-pump pressure proportional gain 0	[0,32767]	8000	
P10	Multi-pump pressure integral gain 0	[0,32767]	88	
P11	Depressurization step-1 delay	[0,32767]	500	ms
P12	Multi-pump pressure proportional gain 1	[0,32767]	8000	
P13	Multi-pump pressure integral gain 1	[0,32767]	88	
P14	Speed proportional torque boost	[0,1000]	0	%
P15	Multi-pump pressure proportional gain 2	[0,32767]	8000	
P16	Multi-pump pressure integral gain 2	[0,32767]	88	
P17	Quick	[0,32767]	0	
	depressurization	A greater value indicates	-	

Code	Definition	Range	Default	Unit
	coefficient	quicker depressurization 0: Invalid		
P18	Multi-pump pressure proportional gain 3	[0,32767]	8000	
P19	Multi-pump pressure integral gain 3	[0,32767]	88	
P20	Depressurization overshoot suppression factor	[0,32767] A smaller value indicates greater suppression 0: Invalid	0	
P21	ECAT synchronization method	Run freely Synchronization manager Synchronization clock	0	
P22	ECAT synchronization time	0: 500µs 1: 1ms 2: 2ms 3: 4ms	0	
P23	RS485 communication address	[1,255]	10	
P24	RS485 communication parity method	0: (N,8,1) 1: (E,8,1) 2: (O,8,1) 3: (N,8,2) 4: (E,8,2) 5: (O,8,2) Note: N: No parity bit. E: Even parity. O: Odd parity. 8- bit data. 1 or 2 stop bits.	0	
P25	RS485 communication baud rate	0: 9600bps 1: 19200bps 2: 38400bps 3: 57600bps	1	
P26	CANOpen communication node No.	[1,127]	1	
P27	CANopen communication baud rate	0: 1000kbps 1: 500kbps 2: 250kbps 3: 125kbps 4: 50kbps 5: 20kbps	1	

Code	Definition	R	ange		De	efault	Unit
P28	Proportion 0 of depressurization pressure boost P	[0,32767]			8	3000	
P29	Integral 0 of depressurization pressure boost P	[0,32767]	[0,32767]			5	
P30	Proportion 1 of depressurization pressure boost P	[0,32767]			8000		
P31	Integral 1 of depressurization pressure boost P	[0,32767]	0,32767] 5			5	
P32	Reserved	[0,32767]			6	000	
P33	Reserved	[0,32767]				5	
P34	Slave-node address	LED display i setting:	nterface of sla	ave no	ode add	ress functio	on code
P35	Slave-node address 2	The ten thous	sands place s ns, hundreds,	•	•	•	
P36	Slave-node address	node number	. See the follo	owing	table.		1
1 30	3	Ten thousands place	Thousands place		idreds ace	Tens place	Ones place
		0.	Node 3	No	de 2	Node 1	Node 0
		1.	Node 7	No	de 6	Node 5	Node 4
	Slave-node address	2.	Node 11	No	de 10	Node 9	Node 8
P37	4	3.	Node 15	No	de 14	Node 13	Node 12
			ng e digital addre digital addre		•	•	
P38							

6 Commissioning

You can perform commissioning for the servo system by operating the embedded LED of the drive

6.1 Pressure control commissioning

6.1.1 Flowchart

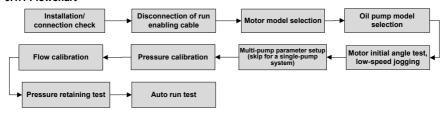


Figure 6-1 Commissioning flowchart

6.1.2 Commissioning procedure

The following describes how to perform commissioning for the servo system by operating the embedded LED.

6.1.2.1 Preparing

Check the installation and connection

Before power on the drive, check the following items:

- Check the connection of each terminal and ensure that all screws for fixing are reliably locked and no slippage occurs.
- Ensure that the drive and the motor are properly grounded.

 After the drive is powered on, the LED displays the speed feedback the drive is in normal state.

If a fault occurs, the LED displays the fault type

6.1.2.2 Parameter initialization

Set F066 to 1. The drive parameters will be restored to the default settings, but the nameplate parameters of the drive and motor are not restored.

6.1.2.3 Motor model selection

Motor model selection method:

Press and hold the keys together for 1 second. The LED value places display ULOCK, indicating that the drive keypad is unlocked.

If you use a motor in Table 5-2 Motor model table, select the model by setting F001.

If you use a motor exclusive from Table 5-2 Motor model table, set motor temperature sensor

F075 to the model used by the motor and set motor type F217 to the type of motor used.

For example: F075 = 2 (KTY84)

F217 = 1 (Salient pole PMSM)

6.1.2.4 Motor parameter autotuning

If you use a motor exclusive from Table 5-2 Motor model table, perform motor parameter autotuning first. The procedure is as follows:

1. Set motor parameters.

F070 = Motor rated voltage

F071 = Motor rated current

F072 = Motor rated speed

P073 = Motor rated frequency

F074 = Motor counter-emf or F129= Motor rated power (Set either one of the two parameters.)

2. Motor parameter autotuning

Enable the diagnosis function. E13 = ON

Set motor parameter autotuning. E14 = 1, 2, 3

Parameters
Parameters E14

When autotuning starts if the setup is completed, the LED displays " ". When autotuning is completed, the LED displays "0".

If the drive reports an alarm during testing, find out the cause, handle the problem, and then continue the autotuning.

6.1.2.5 Measure the motor initial angle.

If you have completed motor parameter autotuning, you do not need to measure the motor initial angle.

Set parameters on the LED: E04

When the initial angle measuring menu is accessed, the LED displays "READY". If you press and hold the (DATA) key and then release it, the system automatically measures the initial angle, and the LED displays "DATA), When the measuring is completed, the LED displays "OK".

6.1.2.6 Low-speed jogging

The test purpose is to check whether the basic functions of the servo system are normal.

Check and prepare for the running.

For the first run of the servo system, you must check whether the hydraulic loop connection and the servo system electrical connection are correct; whether the values of the oil pump displacement and working pressure are consistent with those on the nameplate. At the earlier period, adjust the system so that the oil discharged from the pump goes directly back to the tank, for example, by setting the overflow pressure of relief valve to the lowest.

2. Run at low speed with light load.

When the LED displays the E12 status, press and hold the key and then release it to enter the jogging mode. Then the LED displays "JOG". You can press and hold the key to make the motor accelerate to the max. forward or reverse jogging speed.

Confirm the working situation.

When you are sure that the motor runs forward, the pump rotates in the same direction as the arrow on the pump label; the noise and vibration are in the normal range and the pump can suck oil normally.

If the pump rotates in a direction different from the arrow on the pump label when the motor runs forward, modify the value of P042 to change the rotation direction of the motor.

6.1.2.7 Pressure and flow calibration

1. Zero-drift automatic correction

Set E26 to 1. The LED keypad displays "-FI-". Press the [DATA] key and the analog input zero drift will be automatically corrected.

2. Flow and pressure settings

F010=System oil pressure, example: 175

F011=System flow, example: 200

F106=Pressure protection threshold (default: 195). If the system pressure exceeds 195, the

default value should be changed.

Nominal flow and pressure reference calibration

Parameters Name		Description	
E152	Voltage in full	Max. voltage input for pressure reference	
F153	pressure scale range		
F454	Voltage in full flow	May valtage input for flow reference	
F154	scale range	Max. voltage input for flow reference	

These parameters are used to set the corresponding relationship between flow and pressure command 0–10V and 0–system flow and system oil pressure.

Pressure feedback calibration

Parameters	Name	Description
		5V: Sensor output range of 1–5V, measuring range of
		0–200bar
F044	Pressure sensor	10V: Sensor output range of 0–10V, measuring range
F044	model selection	of 0–250bar
		400bar: Sensor output range of 0–10V, measuring
		range of 0-400bar
F070	Pressure sensor scale	Set the pressure sensor scale range, corresponding to
F079	range	the pressure value of input voltage 5V or 10V.

Note: If the drive is operating in speed mode only, the system pressure setting, pressure feedback, and pressure reference calibration can be skipped.

6.1.2.8 Pressure retaining test

Restart the servo system.

After the system power is off, re-power on the system. The drive control permission is given to the device control computer. When the drive enters the run state (the RUN/TUNE indicator is on), perform the following tests.

2. Test of low pressure retaining

Maximize the overflow pressure of the relief valve before the following operations.

On the upper computer, set the flow reference to 10% and the pressure reference to 20bar. Check the oil path for leakage and check whether "Pressure feedback" and device-read pressure are 20bar.

3. Test of high pressure retaining

After the successful test of low pressure retaining, you can perform the test of high pressure retaining. Set the flow reference to 80% on the upper computer, and gradually increase the pressure reference to max. pressure required. View "Pressure feedback" and "Speed

feedback".

If the actual system pressure cannot reach the set pressure, check the oil path for leakage.

If the actual system pressure reaches the set pressure, but the motor average rotation speed is higher than the normal one, check whether:

- there is abnormal leakage in the oil pump;
- there is abnormal leakage in the hydraulic oil path;
- there is leakage in the relief valve;

Ensure the retained pressure and motor rotation speed at retaining meet requirements, and ensure the pressure fluctuation meets requirements according to the following table.

Measuring indicator	Expected result (recommended)	
Pressure fluctuation (100% of pressure reference)	≤3bar	

6.1.2.9 Calibration review

In the pressure retaining test, set the pressure reference to 10bar, 100bar, and full scale pressure on the host controller. Check whether the read data in the pressure table matches the setting. If not, perform pressure calibration again.

Set the flow reference to 5%, 50%, and 100% on the upper computer. Check whether the motor rotation speed and given flow are in a proportion. If not, perform flow calibration again.

6.1.2.10 Fully automatic run and system performance adjustment

1. Adjust the pressure/flow command filtering.

Increasing the pressure/flow filtering parameter value will reduce command fluctuation and slow down the command response.

Pressure/flow command filtering parameters:

Code	Definition	Range	Default	Unit
F008	Pressure filtering	[1,32]	6	Average sampling count of moving (1ms)
F009	Flow filtering	[1,32]	6	Average sampling count of moving (1ms)

Increasing the pressure/flow command rise speed will improve the oil pump output flow and oil pressure response, have greater impact on the run, and increase the overshoot; decreasing the speed will slow down the speed, and decrease the overshoot.

Pressure/flow command rise/fall parameters:

Code	Definition	Range	Default	Unit
F017	Pressure reference rise slope	[0,32767]	16000	0.007629 bar/ms
F018	Pressure reference fall slope	[0,32767]	16000	0.007629 bar/ms
F131	Flow reference rise slope	[0,32767]	16000	0.07324 (L/min)/ms
F132	Flow reference fall slope	[0,32767]	16000	0.07324 (L/min)/ms

2. Set multi-step speed/pressure PI.

If the servo system uses stepped PI control in different working conditions, connect the digital input ports I5 (CN6-5) and I6 (CN6-6) as the indication signals of control stages, and then enable multi-step PI of speed/pressure. The following table lists the mapping between digital input signals and speed/pressure PI steps.

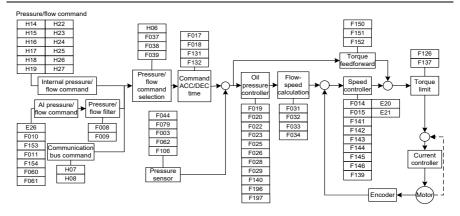
16	15	KP No.	KI No.
low	low	0	0
low	high	1	1
high	low	2	2
high	high	3	3

3. Adjust system performance.

The servo system uses the following gain parameters for oil pressure control. You can adjust the response characteristics and steady-state accuracy of the servo system by setting these parameters.

Speed PI adjustment:

Code	Definition	Setting	Range	Default
F139	Enabling multi-step PI of		0: Disable	0
	speed		1: Enable	ŭ
E18	Speed proportional gain 0	Increasing the speed	[0,32767]	7000
F014	Speed proportional gain o	proportional gain can improve	[0,32767]	7000
F141	Speed proportional gain 1	the transient responsiveness of	[0,32767]	7000
F143	Speed proportional gain 2	motor speed control, enhance	[0,32767]	7000
F145	Speed proportional gain 3	the motor speed stability, and suppress interference, but setting the gain too great will cause oscillation.	[0,32767]	7000
E19 F015	Speed integral gain 0	Increasing the speed integral gain can improve the transient	[0,32767]	170
F142	Speed integral gain 1	responsiveness of motor	[0,32767]	140
F144	Speed integral gain 2	speed control, reduce the	[0,32767]	140
F146	Speed integral gain 3	motor speed deviation, and increase speed overshoot, but setting the gain too great will cause oscillation.	[0,32767]	140


Pressure PI adjustment:

Code	Definition	Setting	Range	Default
F140	Enabling multi-step PI of		0: Disable	0
F140	pressure		1: Enable	U

Code	Definition	Setting	Range	Default			
Settings fo	Settings for the single-pump or flow splitting type:						
E16 F019	Pressure proportional gain 0	Increasing the pressure proportional gain can improve	110.327671	13000			
F022	Pressure proportional gain 1	the transient responsiveness and stability of pressure	[0,32767]	13000			
F025	Pressure proportional gain 2	control, suppress interference, and reduce pressure	[0,32767]	13000			
F028	Pressure proportional gain 3	overshoot, but setting the gain too great will cause oscillation.	[0,32767]	13000			
E17 F020	Pressure integral gain 0	Increasing the pressure integral gain can improve the	[0,32767]	100			
F023	Pressure integral gain 1	transient response speed of		100			
F026	Pressure integral gain 2	pressure control, reduce the	[0,32767]	100			
F029	Pressure integral gain 3	pressure speed deviation, and increase pressure overshoot, but setting the gain too great will cause oscillation.	[0 32767]	100			
Settings fo	r the the flow combining ty	/pe:					
P09	Multi-pump pressure proportional gain 0	proportional gain can improve	[0,32767]	8000			
P12	Multi-pump pressure proportional gain 1	the transient responsiveness and stability of pressure	[0,32767]	8000			
P15	Multi-pump pressure proportional gain 2	control, suppress interference, and reduce pressure overshoot. but	[0,32767]	8000			
P18	Multi-pump pressure proportional gain 3	sotting the gain too great will	[0,32767]	8000			
P10	Multi-pump pressure integral gain 0	Increasing the pressure integral gain can improve the	[0,32767]	170			
P13	Multi-pump pressure integral gain 1	transient response speed of pressure control, reduce the	[0,32767]	170			
P16	Multi-pump pressure integral gain 2	increase pressure overshoot,	[0,32767]	170			
P19	Multi-pump pressure integral gain 3	but setting the gain too great will cause oscillation.	[0,32767]	170			

When the motor and pump model selection settings are completed, the drive automatically selects the values matching the motor and pump. If the system performance indicators do not meet requirements, adjust the preceding parameters.

The oil pressure control diagram of a single pump is shown as follows. The gain parameters that can be adjusted in the process mode are marked in the diagram.

6.2 Speed mode commissioning

- 1. Complete procedures in 6.1.2.1–6.1.2.7.
- 2. P05=3 (Flow-loop unit) Speed mode
- 3. F160=5 (DI4 input selection) Motor rotation direction

Disconnect DI4 and 24-, forward running;

Connect DI4 and 24-, reverse running;

Commission the system performance according to 6.1.2.10 Fully automatic run and system
performance adjustment. Adjust the flow and speed-related parameters only and keep the
pressure-related parameters unchanged.

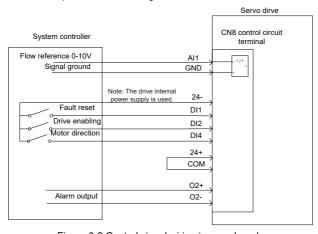


Figure 6-2 Control signal wiring in speed mode

7 Multi-pump combined flow control

For the hydraulic control of large tonnage injection molding machines, a single-pump system is far from being able to meet the flow requirements due to the limitation of pump displacement or motor power. Therefore, the outlets of multiple single-pump systems must be connected in parallel to achieve a large flow rate. In a combined-flow system, to improve the production efficiency and shorten the product process cycle, two or more actions need to be completed at the same time, the single-loop hydraulic system needs to be divided into double loops or three loops that are independently controlled. At split flow control, each loop independently completes the flow and pressure control. At combined flow control, a master drive is responsible for pressure control and total system flow control, while the other drives perform single-loop flow control by converting the total system flow commands to respective-loop flow commands. The total system output flow is the sum of the flow output of each loop.

7.1 Flow distribution method for multi-pump flow combining

You can add nodes for flow control to ensure that the output flow is linear within 0–100% of flow command.

Each node (or single-pump system) can carry a certain flow on its own, called the max. private flow.

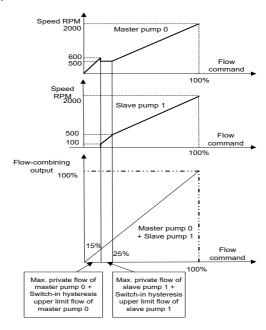


Figure 7-1 Slave pump responding to master node flow commands

For a total system flow reference command: When it is less than the max. private flow of master pump 0, master pump 0 carries all the system flow. When it is greater than the max. private flow of master pump 0, master pump 0 carries its own max. private flow, while the slave pumps carry the remaining flow. When the remaining flow is less than the max. private flow of slave pump 1, the remaining flow is carried by slave pump 1; when the remaining flow is greater than the max. private flow of slave pump 1, slave pump 1 carries its own max. private flow, and other slave pumps carry the other flow; and so on, until the remaining flow is completely carried. If the max. private flow of the last slave pump is less than the remaining flow, the system flow is equally (or proportionally) distributed to all pumps.

7.2 Multiple pumps

After the flow combining type of each node (or single-pump system) is set to the multi-pump mode, each node can only work in flow combining control, in which the master node is responsible for receiving pressure reference, flow reference, and run enabling signal from the upper control system and pressure sensor signal from system outlets to perform pressure and total system flow control. The slave nodes simply perform speed control based on the total system flow commands transmitted through CAN communication, which are converted into speed commands according to the flow distribution algorithm described above.

1. Multi-pump systematic diagram:

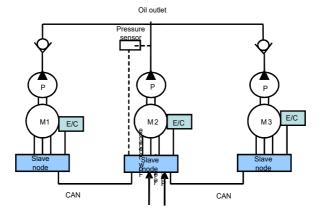


Figure 7-2 Multi-pump systematic diagram

Slave servo drive 1 Slave servo drive 2 Pressure senso Outou Black or blue GND Ground 15V System controller A/D Flow reference 0~10V (PE) essure reference 0~10V AI2 GND CH C1L ᄗ 딩 24-Fault rese DI1 Drive enablin DI2 24+ COM 02+ Alarm output 02-

2. Multi-pump systematic wiring diagram:

Figure 7-3 Multi-pump systematic wiring diagram

7.3 Hybrid

The system has two control modes: flow combining and splitting, with digital input I1 (C/D) signal to switch the control mode of each node. At flow splitting, each node is used as a single-loop hydraulic system to complete the flow and pressure control. At flowing combining, similar to the multi-pump method, the master node is responsible for pressure and total system flow control, while the slave nodes simply perform speed control based on the total system flow commands transmitted through CAN communication, which are converted into speed commands according to the flow distribution algorithm described above.

Hybrid method systematic diagram:

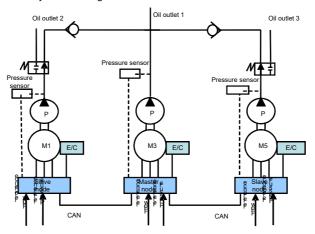


Figure 7-4 Hybrid method systematic diagram

7.4 Multiple modes

The hydraulic servo system consists of three nodes, of which each node consists of one or more single-pump systems. A single-pump system is called a control unit. A node consisting of one control unit is an independent unit node, while a multi-unit node consisting of multiple control units can be regarded as a node consisting of a dual or multiple pumps. A multi-unit node consists of a control unit and one or more following units. Each node has a pressure sensor connected to the control unit, while the control unit is connected to the upper control system through the AIN1 and AIN2 analog interfaces to receive pressure and flow reference signals. The two DA outputs of control unit connect to the analog inputs AIN1 and AIN2 of following unit to function as the motor speed reference signal and drive enabling signal. The RDY outputs of following unit are in serial connection, with the positive end connected to the 24V power supply, while the negative end connected to digital input port I7 of control unit, through which the control unit obtains the run status of following unit drive.

Each node uses the digital input signal I1(C/D) to switch the control mode. When I1(C/D) is high, the node works in flow combining state. When I1(C/D) is low, the node works in flow splitting state. When the system works in the flow combining state, the number of nodes with flow combined can be changed. The master node completes pressure control and total system flow control. The master and slave nodes run at the same speed in flow combing state. The flow distribution algorithm described earlier is not applicable to the multi-mode method. The control unit of each node controls the pressure and flow in flow splitting mode, and the following unit keeps the same speed as the control unit.

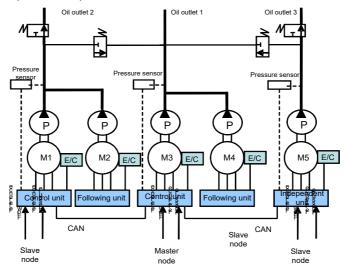


Figure 7-5 Multi-mode systematic diagram

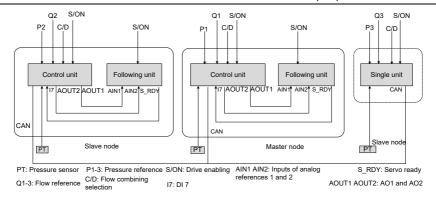


Figure 7-6 Hybrid and multi-mode wiring diagram

7.5 Communication with two models

In this mode, there is one master node (single-pump system), and multiple slave nodes (of which each is also a single-pump system). The master node controls which slave nodes combine flow through the flow splitting/combining selection terminal. There are two types of node combination.

Flow splitting/combining selection	CAN slave node address selection
Low	CAN slave-node address 1
High	CAN slave-node address 2

P34 (CAN slave-node address 1) and P35 (CAN slave-node address 2): used to select a slave node with the flow combined with the master node. Each is a 16-bit integer. A total of 15 slave nodes can be set. The value 1 of a bit indicates combining flow with the master node, while the value 0 indicates splitting flow and independent oil pump control. When the master node combines flow with slave nodes, bit 0 is 1; when the master node independently works, bit 0 is 0.

CAN	CAN slave-node address														
Rang	Range in hexadecimal format: 0x0000–0xffff														
Rang	Range in decimal format: 0–65535														
16-bit	t integ	er, wit	h eac	h bit c	orresp	ondir	ng to a	node							
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Master
node	node	node	node	node	node	node	node	node	node	node	node	node	node	node	node 0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	node 0

Wiring diagram for communication with two models:

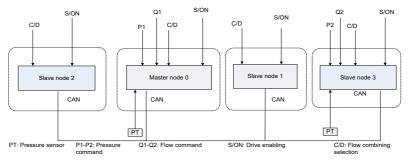


Figure 7-1 Wiring diagram for communication with two models

Example: The hydraulic system has four oil pumps, with the addresses set to 0, 1, 2, and 3. There may be two types of action combination:

Combination 1: Nodes 0, 1, and 2 combine the flow, while node 3 split the flow and serve as the master nodes

The host controller provides all flow splitting/combining selection terminals from the low level to all the master and slave nodes. CAN slave node address selection: Address 1

P34 (CAN slave-node address 1) = 7 (0x0007)

Nodes 0, 1, and 2 combine the flow, while node 3 splits the flow and serves as the master node

Combination 2: Nodes 0, 1, 2, and 3 combine the flow.

The host controller provides all flow splitting/combining selection terminals from the high level to all the master and slave nodes. CAN slave node address selection: Address 2

P35 (CAN slave-node address 2) = 15 (0x000f)

The four nodes combine the flow to work.

7.6 Communication with four models

In this mode, there is one master node (single-pump system), and multiple slave nodes (of which each is also a single-pump system). The master node controls which slave nodes combine flow through the flow splitting/combining selection terminal and the terminal of flow splitting/combining selection 1. There are four types of node combination.

Terminal of flow splitting/combining selection 1	Terminal of flow splitting/combining selection	CAN slave node address selection
Low	Low	CAN slave-node address 1
Low	High	CAN slave-node address 2
High	Low	CAN slave-node address 3
High	High	CAN slave-node address 4

P34, P35, P36, and P37 (CAN slave-node addresses 1, 2, 3, and 4): used to select a slave node with the flow combined with the master node. Each is a 16-bit integer. A total of 15 slave nodes can be set. The value 1 of a bit indicates combining flow with the master node, while the value 0 indicates splitting flow and independent oil pump control. When the master node combines flow with slave nodes, bit 0 is 1; when the master node independently works, bit 0 is 0.

CAN	CAN slave-node address														
Rang	Range in hexadecimal format: 0x0000–0xffff														
Rang	je in d	ecima	l form	at: 0–	65535	;									
16-bi	t integ	er, wit	h eac	h bit c	orresp	ondir	ng to a	node	!						
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	Slave	
node node node node node node node node															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	node 0

Wiring diagram for communication with four models:

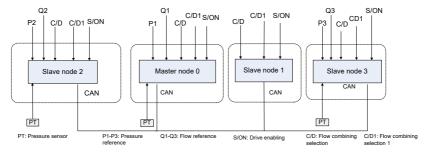


Figure 7-2 Wiring diagram for communication with four models

Example: The hydraulic system has four oil pumps, with the addresses set to 0, 1, 2, and 3. There may be four types of action combination:

Combination 1: Nodes 0 and 1 combine the flow, while nodes 2 and 3 split the flow and serve as the master nodes.

The upper computer provides the flow splitting/combining selection terminal from the low level to all nodes, and the low level connects to the terminal of flow splitting/combining selection 1. CAN slave node address selection: Address 1

P34 (CAN slave-node address 1) = 3(0x0003)

Nodes 0 and 1 combine the flow, while nodes 2 and 3 split the flow and serve as the master nodes.

Combination 2: Nodes 0, 1, and 2 combine the flow, while node 3 splits the flow and serves as the master node.

The upper computer provides the flow splitting/combining selection terminal from the high level to all nodes, and the low level connects to the terminal of flow splitting/combining selection 1.

CAN slave node address selection: Address 2

P35 (CAN slave-node address 2) = 7 (0x0007)

Nodes 0, 1, and 2 combine the flow, while node 3 splits the flow and serves as the master node.

Combination 3: Nodes 0, 1, and 3 combine the flow, while node 2 splits the flow and serves as the master node.

The upper computer provides the flow splitting/combining selection terminal from the high level to all nodes, and the low level connects to the terminal of flow splitting/combining selection 1. CAN slave node address selection: Address 3

P36 (CAN slave-node address 3) = 11 (0x000B)

Nodes 0, 1, and 2 combine the flow, while node 3 splits the flow and serves as the master node.

Combination 4: Nodes 0, 1, 2, and 3 combine the flow.

The upper computer provides the flow splitting/combining selection terminal from the high level to all nodes, and the low level connects to the terminal of flow splitting/combining selection 1. CAN slave node address selection: Address 4

P37 (CAN slave-node address 4) = 15 (0x000F)

The four nodes combine the flow to work.

Debug parameters for multi-node parallel connection control

Displayed code	Name	ame Description		
P00	Enabling the network	Indicates whether to enable the network. First, you need to debug the parameters used for the single pump type, flow splitting/combining selection, and node number for each node. For the master node, you need to set the number of slave nodes, the flow switch-in threshold, and the flow switch-in hysteresis upper limit and lower limit. Then, execute the network enabling command in a sequence from slave nodes to master nodes. 0: Disable 1: Enable	0	
P01	Opening network pipes	Controls whether to enable the drives of all nodes. Applicable to the muti-mode type. 0: Close 1: Open	0	
P02	Combining type	Selects the flow combining type. 0: Single pump 1: Hybrid 2: Multiple pumps 3: Multiple modes	0	

Displayed code	Name	Description	Initial value	Unit
P03	Node No.	The node No. 0 indicates the master node. A node No. ranging from 1 to 15 indicates a slave node.	0	
P04	Slave count	When the node No. is 0, this parameter indicates the number of slave nodes connected to the master node.	0	
P05	Node type	Specifies the way the drive works in the node. 0: Independent unit 1: Control unit 2: Follow-up unit 3: Flow-loop unit	0	
P06	Flow switch-in threshold	Specifies the condition for a next pump to join the work. When the system flow exceeds the flow switch-in threshold of the working pump, a next pump is asked to join the work.	25	%
P07	Flow switch-in hysteresis upper limit	Specifies the condition for a next pump to join the work, used to prevent the pump from repeated startup and shutdown when the flow is at the threshold.		%
P08	Flow switch-in hysteresis lower limit	Specifies the condition for a next pump to join the work, used to prevent the pump from repeated startup and shutdown when the flow is at the threshold.	2.5	%
P09	Multi-pump pressure proportional gain 0	Step 0 of proportion parameter for multi- pump pressure PID control	8000	
P10	Multi-pump pressure integral gain 0	Step 0 of integral parameter for multi-pump pressure PID control	88	
P12	Multi-pump pressure proportional gain 1	Step 1 of proportion parameter for multi- pump pressure PID control	8000	
P13	Multi-pump pressure integral gain 1	Step 1 of integral parameter for multi-pump pressure PID control	88	
P15	Multi-pump pressure proportional gain 2	Step 2 of proportion parameter for multi- pump pressure PID control	8000	
P16	Multi-pump pressure integral gain 2	Step 2 of integral parameter for multi-pump pressure PID control	88	
P18	Multi-pump	Step 3 of proportion parameter for multi-	8000	

Displayed code	Name	lame Description		
	pressure	pump pressure PID control		
	proportional gain 3			
P19	Multi-pump pressure integral gain 3	Step 3 of integral parameter for multi-pump pressure PID control	88	
P34	CAN slave-node address 1		0	
P35	CAN slave-node address 2	Four slave-node addresses. Range: 0–	0	
P36	CAN slave-node address 3	65535	0	
P37	CAN slave-node address 4		0	

7.7 Multi-pump control mode settings

7.7.1 Pump model selection

If you use a pump in Table 5-3 Oil pump model table, select the model by setting E02. If you use a pump exclusive from the table, manually set pump parameters. Set F031.

7.7.2 Multi-pump parameter settings

1. Set the flow combining type.

Set P02 (Flow combining type).

- 0: Single pump. 1: Hybrid. 2: Multiple pumps. 3: Multiple modes. 4: Communication with two models 5: Communication with four models
- 2. Set node No.

Set P03 (Node No.).

3. Set P04 (Slave count).

Set the number of slave nodes. (It is mandatory for node 0; skip the operation for other nodes.)

4. Set multi-pump flow.

Set P06 (Flow switch-in threshold), which is usually set to 25%.

Set P07 (Flow switch-in hysteresis upper limit), which is usually set to 5%.

Set P08 (Flow switch-in hysteresis lower limit), which is usually set to 2.5%.

Set network enabling and network pipe opening.

Enable the network: In the sequence of from the slave to the master, set P00=1 to enable the network for the drive.

7.7.3 Flow calibration

When the combining type is multi-pump, the flow reference need to be recalibrated for the master node (main pump). At this time, the system max. flow is the sum of max. flow on each node and the full flow scale range cannot exceed this value.

Parameters	Name	Description
		It is zero for single pump. After the multi-pump flow combining
d19	System max. flow	network is enabled, the system max. flow is the sum of max.
		flow on each node.

1. Full flow scale range setting

F010=System max. flow, example: 500.0 L/min

Parameters	Name	Description
		This value determines the full flow scale range. In addition, it
F010	Full pressure	also adjusts the flow reference gain so that when the flow
F010	scale range	reference input is 9.99V, the flow reference corresponds to
		the recently set flow full scale range value.

2. Nominal flow and pressure reference calibration

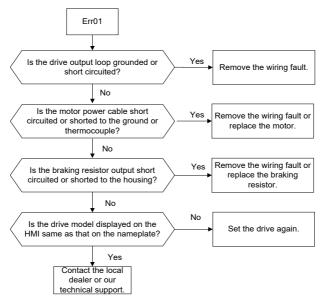
Parameters	Name	Description
F154	Voltage in full flow scale range	Max. voltage input for flow reference.

8 Troubleshooting

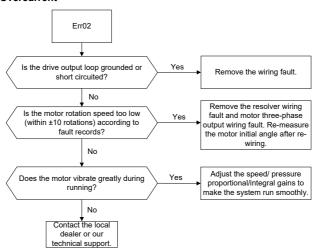
8.1 Display list for protection

The drive alarms with messages and protects against faults such as overvoltage and overcurrent. Once upon a fault occurs, the protection function is enabled, the drive stops output, and the motor stops running. Please view the displayed content to find out the cause and remove the faults. Fault records are stored in the internal memory of drive. The memory always show information and generation time of the last five faults, which can be viewed through the LED panel. The fault codes are listed in the following table. If the working condition is not improved after fault handling, contact our local dealer or service personnel.

Code	Name	Definition	Code	Name	Definition
Err01	IPM fault	Short-circuit current goes through the power module transiently.	Err02	Overcurrent	The output current exceeds the allowed working current of drive.
Err03	DC overvoltage	The DC voltage on the main circuit is abnormally high.	Err04	DC undervoltage	When the motor is powered on to run, the DC voltage on the main circuit decreases lower than the protection value.
Err05	FWD overspeed	The motor rotation speed exceeds the forward speed protection value.	Err06	Module overtemperature	The drive temperature exceeds the module protection temperature.
Err07		The motor temperature exceeds the motor protection temperature.	Err08	Software fault	The drive software runs abnormally.
Err09	CAN fault	The drive reports the fault upon a CAN communication exception when the process command mode is continuous CAN communication input or multi-pump joint application.	Err10	Reserved	
Err11	Self-check fault	The internal hardware of drive is abnormal.	Err12	Task re-entry	An error occurred when invoking a software program.
Err13	System	The system pressure	Err14	REV overspeed	The motor rotation

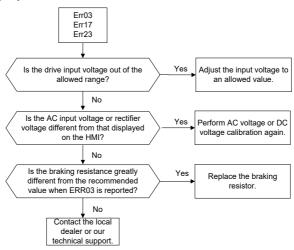

Code	Name	Definition	Code	Name	Definition
	overpressure	exceeds the overpressure protection threshold.			speed exceeds the reverse speed protection value.
Err15	Pressure sensor fault	The pressure sensor is incorrectly wired or damaged.	Err16	Braking pipe fault	The braking pipe is damaged.
Err17	AC overvoltage	The input AC voltage exceeds AC overvoltage protection@	Err18	EEPROM error	There is a drive EEPROM data exception.
Err19	Reserved		Err20	AC undervoltage	The input AC voltage is lower than AC undervoltage protection@
Err21	Braking resistor overload	The braking resistor overload rate exceeds the braking resistor overload threshold.	Err22	Node fault	In multi-pump parallel connection application, if a slave node encounter a fault, the master drive reports it.
Err23	Input phase loss	Input phase loss occurs or three phases are unbalanced.	Err24	Reserved	
Err25	RS485 communication fault	The drive encounters an RS485 communication exception when the process command mode is continuous RS485 communication input.	Err26	Current feedback channel fault	The zero drift in power-on self-check is too great.
Err27– Err32	Reserved		Err33	Resolver sampling fluctuation fault	When the drive is tested in diagnosis mode, the resolver sampling value fluctuates greatly.
Err34	Phase-A current sampling fluctuation fault	mode, the phase-A	Err35	Phase-B current sampling fluctuation fault	When the drive is tested in diagnosis mode, the phase-B current sampling

Code	Name	Definition	Code	Name	Definition
		greatly.			value fluctuates greatly.
Err36	Phase-A current sampling zero drift fault	When the drive is tested in diagnosis mode, the phase-A current sampling zero drift is too great.	Err37	Phase-B current sampling zero drift fault	
Err38	DC voltage sampling fluctuation fault	When the drive is tested in diagnosis mode, the DC voltage sampling value fluctuates greatly.	Err39	Pressure feedback sampling fluctuation fault	When the drive is tested in diagnosis mode, the pressure feedback sampling value fluctuates greatly.
Err40	Pressure feedback sampling zero drift fault	When the drive is tested in diagnosis mode, the pressure feedback sampling zero drift is too great.	Err41	Pressure reference sampling fluctuation fault	When the drive is tested in diagnosis mode, the pressure reference sampling value fluctuates greatly.
Err42	Flow reference sampling fluctuation fault	When the drive is tested in diagnosis mode, the flow reference sampling value fluctuates greatly.	Err43	Reserved	
Err44	Module temperature sampling fluctuation fault	When the drive is tested in diagnosis mode, the module temperature sampling value fluctuates greatly.	Err45	Motor temperature sampling fluctuation fault	When the drive is tested in diagnosis mode, the motor temperature sampling value fluctuates greatly.
Err46– Err48	Reserved		Err49	Encoder initial angle measuring fault	During motor parameter autotuning in diagnosis mode, a fault occurs in the encoder initial angle measuring, for example, current does not follow, and

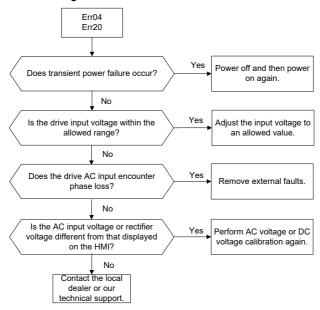

Code	Name	Definition	Code	Name	Definition
					timeout occurs.
Err50	Phase sequence detection fault	During motor parameter autotuning in diagnosis mode, the number of motor pole pairs is calculated incorrectly, the rotation speed limit value is invalid, current does not follow, or timeout occurs.	Err51	Motor resistance test fault	During motor parameter autotuning in diagnosis mode, current does not follow, timeout occurs, or the resistance test value is invalid.
Err52	Motor parameter dynamic test fault	During motor parameter autotuning in diagnosis mode, the speed deviation is too great, current does not follow, the load is too great, timeout occurs, or the test value is invalid.	Err53	Motor parameter static test fault	During motor parameter autotuning in diagnosis mode, the motor parameter calculation result is invalid.
Err54	Diagnosis interrupted	If a fault occurs during diagnosis, the drive terminates the diagnosis and displays "Err54".	Err55	Reserved	
Err56	EtherCAT initialization fault	The EtherCAT chip is in poor contact.	Err57	EEPROM fault in EtherCAT communication	The EEPROM does not have data or it fails to read data.
Err58	EtherCAT disconnection	After the drive is enabled, the network cable is not inserted properly, or the EtherCAT master node does not run properly.	Err59	EtherCAT communication fault	No PDO data is received after the drive has been enabled for a period of time.

8.2 Fault handling flowcharts

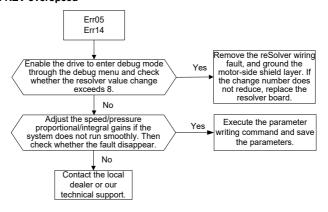
Err01: IPM fault


Err02: Overcurrent

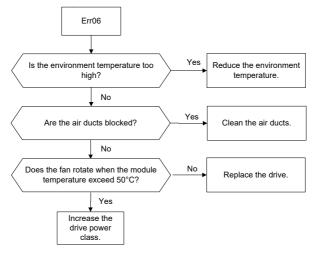
Err03: DC overvoltage


Err17: AC overvoltage

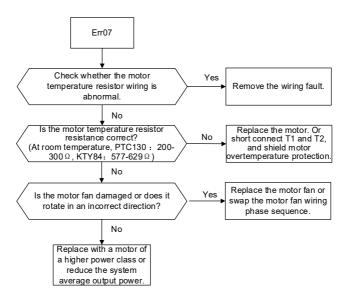
Err23: Input phase loss

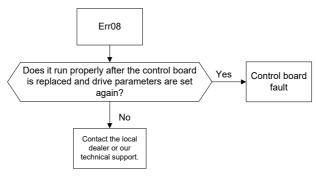

Err04: DC undervoltage

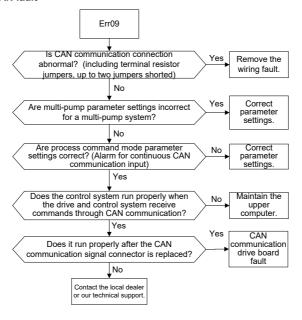
Err20: AC undervoltage



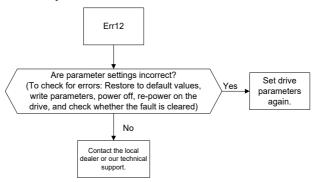
Err05: FWD overspeed

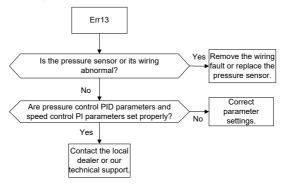

Err14: REV overspeed

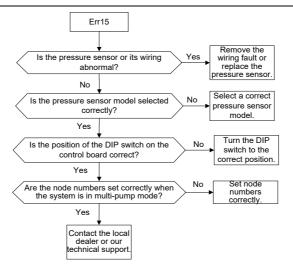

Err06: Module overtemperature

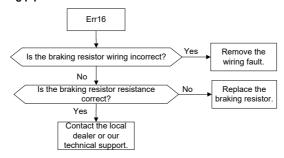

Err07: Motor overtemperature

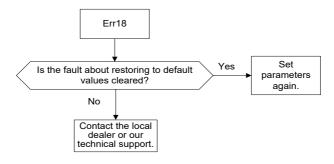
Err08: Software fault

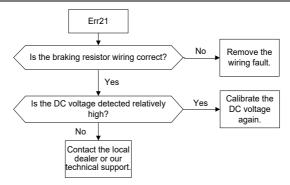

Err09: CAN fault

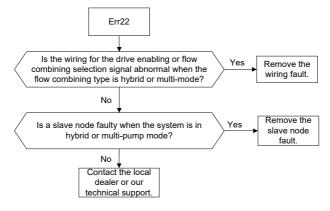

Err11: Self-check fault

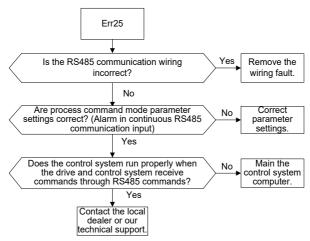

Err12: Task re-entry

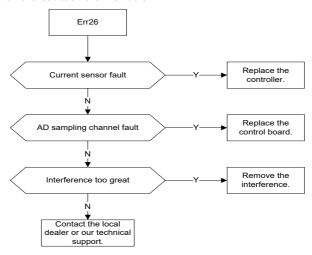

Err13: System overpressure

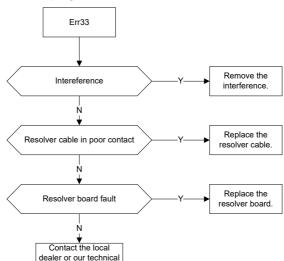

Err15: Pressure sensor fault


Err16: Braking pipe fault


Err18: EEPROM error


Err21: Braking resistor overload

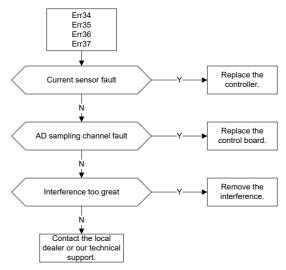

Err22: Node fault



Err25: RS485 communication fault

Err26: Current feedback channel fault

Err33: Resolver sampling fluctuation fault

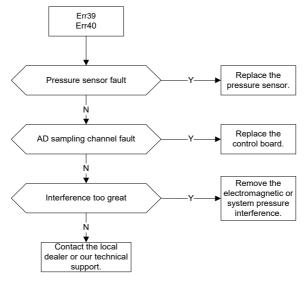

Err34: Phase-A current sampling fluctuation fault

support.

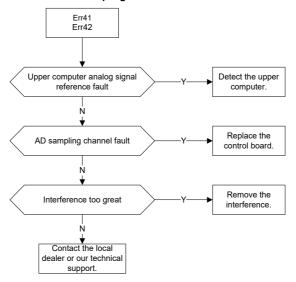
Err35: Phase-B current sampling fluctuation fault

Err36: Phase-A current sampling zero drift fault

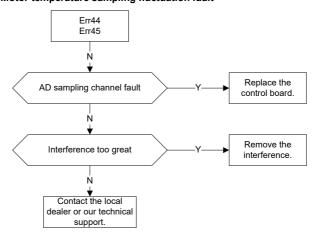
Err37: Phase-B current sampling zero drift fault



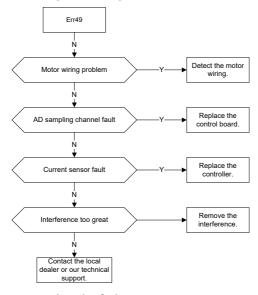
Err38: DC voltage sampling fluctuation fault


Err39: Pressure feedback sampling fluctuation fault

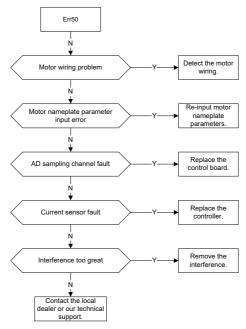
Err40: Pressure feedback sampling zero drift fault

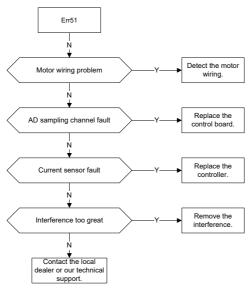

Err41: Flow reference sampling fluctuation fault

Err42: Pressure reference sampling fluctuation fault

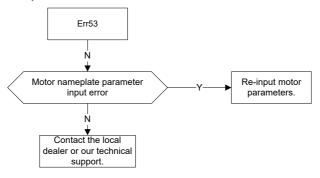


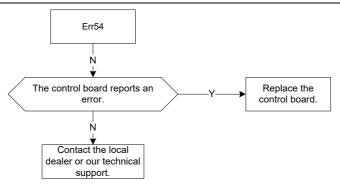
Err44: Module temperature sampling fluctuation fault

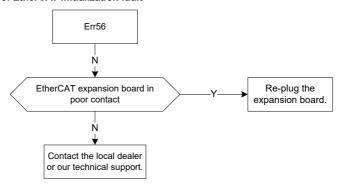

Err45: Motor temperature sampling fluctuation fault

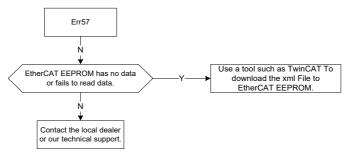

Err49: Encoder initial angle measuring fault

Err50: Phase sequence detection fault

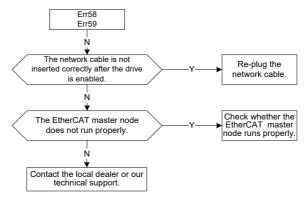

Err51: Motor resistance test fault


Err52: Motor parameter dynamic test fault


Err53: Motor parameter static test fault


Err54: Diagnosis interrupted

Err56: EtherCAT initialization fault



Err57: EEPROM fault in EtherCAT communication

Err58: EtherCAT disconnection

Err59: EtherCAT communication fault

8.3 Common faults and solutions

The following table lists the common faults that the servo may encounter and the solutions.

No.	Fault	ult Possible cause Solution	
1	No display at power-on	 Drive power input in poor condition. Loose connection between the drive board and control board. Internal drive component fault. 	Check the input power Remove and insert the
2	Drive DI terminal invalid	 Loose DI terminal wires. Incorrect parameter settings. Loose short contact tag of J1 and J2, or incorrect internal or external power supply selected. Control board terminal fault. 	 Remove and insert the connection wires. Check and set parameters correctly. Ensure the short contact tag is in good contact and the short connection method is correct. Ask for manufacturer service.
3	Motor not rotate as drive runs	contact. • Motor damaged or stalled.	 Perform correct wiring. Replace the motor or check for mechanical faults. Check and set drive parameters correctly.
4	Overcurrent fault	 Incorrect parameter settings. Load fluctuation or oil pump damage. 	● Set overcurrent parameters

No.	Fault	Possible cause	Solution
		wiring (wire damage or loose connection). • Drive fault.	● Replace the faulty drive.
5	Overvoltage fault	 AC input power voltage too high. Incorrect parameter settings. Braking unit exception. Drive fault. 	 Adjust the AC power voltage to a normal value. Set overvoltage parameters properly. Ask for manufacturer service. Replace the servo drive.
6	Undervoltage fault	 AC input power voltage too low (or voltage drop too great). AC 3PH input voltage with phase loss. Soft-startup relay not closed. Drive fault. 	 Adjust the AC power voltage to a normal value. Check the power supply and run again. Ask for manufacturer service. Replace the servo drive.
7	Motor/drive overtemperature fault	 Rated load exceeded. Ambient temperature higher than 50°C. Incorrect motor temperature sensor wiring. Air duct blocked or fan damaged. Internal drive circuit fault. 	 Lower the ambient temperature to less than 50°C. Correct motor temperature
8	Pressure sensor fault	 Incorrect pressure sensor wiring. Pressure sensor exception. Incorrect pressure sensor model selection. Drive fault. 	 Correct pressure sensor wiring. Replace the pressure sensor. Reselect a pressure sensor model. Replace the servo drive.

9 Maintenance and inspection

The internal components of drive will become ageing due to the influence of environmental temperature, humidity, dust, vibration and other factors, which causes the potential failure or shortens the service life. Therefore, routine inspection and periodic maintenance must be performed for the drive.

9.1 Precautions

Do not perform inspection when the power is on. Otherwise, electric shock may result.

Before inspection, cut off all the equipment power supplies; wait for more than 10 minutes or measure the voltage with a multimeter at the U+ and U- terminals is lower than 36V. This avoids the danger caused by the residual voltage of drive internal capacitor.

9.2 Check item

The following items need to be checked on a regular basis.

Check item	Details	Method	Expected result	
Running environment	Ambient temperature, humidity, dust volume, dust composition, oil/ acid mist, and so on	Visual inspection, thermometer, and hygrometer	Requirements in the manual are met.	
Power supply voltage	Whether the supply voltage is normal Whether power-on logic actions	Voltmeter and multimeter	Requirements in the manual are met.	
J	(such as contactor and air switch) are normal			
Drive exterior and internal components	Whether there is abnormal vibration, noise, deformation, or breakage Whether the external braking resistor connection is loose, resistor is aged, and resistance	Screw fastening, visual inspection, multimeter	No exception occurs.	
Cable	is normal Whether the power cable and its connection position are decolored, aged, or broken in the insulation layer.	Visual inspection	No ageing symptom such as decoloring or breakage	
Air duct	Whether the air duct or heat sink		No blocking	

9.3 Main circuit insulation test

The megohmmeter test is limited to the insulation between the motor windings and the housing. Before the test, all wires between the motor and drive must be disconnected already. Only the 1000V megohmmeter can be used, with the insulation resistance greater than $50M\Omega$.

An improper insulation test method may damage the drive. You are not advised to perform the insulation test by yourself.

9.4 Replacement of wearing parts

9.4.1 Service life

The wearing parts of drive mainly include the cooling fan and electrolytic capacitor for filtering, whose service life is closely related to the running environment and maintenance condition. The following table lists the service life of the wearing parts, which can be replaced based on the accumulative run time.

Part	Service life	Test condition
Fan	≥ 5 years	Ambient temperature: 40°C
Electrolytic	> F	Load rate: 80%
capacitor	≥ 5 years	Run time: 24 hours/day

9.4.2 Replacement

The fan or electrolytic capacitor that reaches the service life or has a damage needs to be replaced in time to avoid affecting the normal use of drive. The following table lists the replacement criteria and method.

Part	Symptom	Criteria	Replacement method
Fan	The shaft bearing is much worn out, the blades are aging, or the blades do not run.	The blades have cracks. There are abnormal noises	Loosen the screws, remove the fan cover, and pull it outward. After replacement, ensure that the wind blows outward.
Electrolytic capacitor	There is liquid outflow, the safety valve is loose, or the electrostatic capacitance value changes.	exterior, the safety valve is loose. or the electrostatic	by yourself since drive internal components

10 Accessories

10.1 Noise filter model selection

Table 10-1 Mapping between drive models and noise filter models

Drive model	Magnet ring configuration	Input reactor configuration	Filter configuration
PH600.007.43ARSF	Small 63*38*25	20A	32A
PH600.011.43ARSF	SITIALI 03 30 23	30A	32A
PH600.015.43ARSF	Small 63*38*25	40A	45A
PH600.018.43ARSF	Small 63"36"25	50A	45A
PH600.022.43ARSF	Medium 80*52*20	60A	65A
PH600.030.43ARSF	Wedium 60 52 20	90A	05A
PH600.037.43ARSF	Medium 80*52*20	90A	100A
PH600.045.43ARSF	Medium 80*52*20	120A	100A
PH600.055.43ARSF	Medium 80*52*20	150A	4504
PH600.075.43BRSF	Extra large 102*65*20	200A	150A
PH600.090.43BRSF	Extra large 102*65*20	250A	240A
PH600.110.43BRSF	Extra large 102*65*20	250A	240A

10.2 Braking resistor model selection and installation

Table 10-2 Mapping between drive models and braking resistor/unit specifications/models

Drive model	Braking resistor specifications		Braking unit
Drive model	Resistance (Ω)	Power (W)	model
PH600.007.43ARSF	40	1000	
PH600.011.43ARSF	40	1000	
PH600.015.43ARSF	40	1000	
PH600.018.43ARSF	40	1000	
PH600.022.43ARSF	15	1500	
PH600.030.43ARSF	15	1500	
PH600.037.43ARSF	10	2000	Built-in braking
PH600.045.43ARSF	10	2000	unit
PH600.055.43ARSF	10	2000	dill
PH600.075.43BRSF	10	4000 (two of $10\Omega/2000W$, in	
F11000.075.43BN3F	10	parallel connection)	
PH600.090.43BRSF	5	4000 (two of $10\Omega/2000W$, in	
F11000.030.43BN3F	3	parallel connection)	
PH600.110.43BRSF	5	4000 (two of $10\Omega/2000W$, in	
F11000.110.43BN3F	3	parallel connection)	

The servo drives have built-in braking units but do not have internal braking resistors. Please be sure to connect an external braking resistor assembly for the drive. The braking resistor with higher power may be needed when the motor brakes frequently. In this situation, you can order the braking resistor with small resistance but high power. The external braking resistor must be installed in a well-ventilated area, away from combustible objects or non heat-resistant parts.

When configuring the external braking resistor by yourself, you must ensure the resistance value is at least equal to the specified value. Otherwise, drive damage may result.

Braking resistor installation

All resistors must be installed in places with good cooling conditions.

The materials near the braking resistor or braking unit must be flame resistant. since the surface temperature of the resistor is high and air flowing from the resistor is of hundreds of degrees Celsius. Prevent any materials from coming into contact with the resistor.

Braking resistor installation

PB and (+) are the terminals for connecting braking resistors.

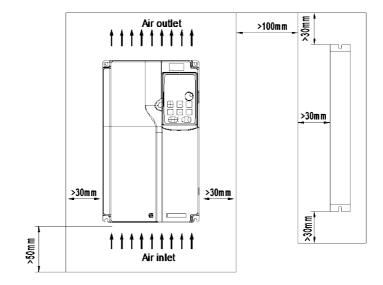


Figure 10-1 PH600.007.43ARSF ~ PH600.037.43ARSF drive and braking resistor layout

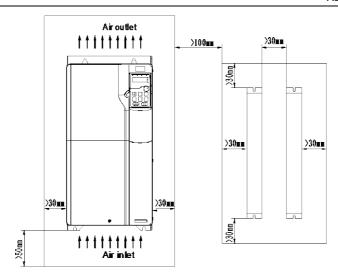


Figure 10-2 PH600.045.43ARSF ~ PH600.075.43BRSF drive and braking resistor layout

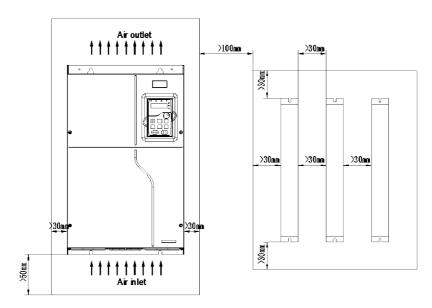


Figure 10-3 PH600.090.43BRSF ~ PH600.110.43BRSF drive and braking resistor layout

10.3 Pressure sensor model selection

Pressure sensor terminal

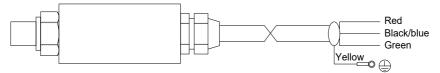


Figure 10-4 Pressure sensor diagram

COLOR	NAME	DEFINITION	
Red	15V	15V power supply	
Black/Blue	GND	D	
Green	Al3	─Pressure analog signal output	
Yellow	PE	Ground wire	

The raw tape is used to seal the connection between the pressure sensor and the oil path. During installation, the pressure sensor must be fastened securely to avoid leakage.

PERPETUAL MOTION

